The Burning Number Conjecture is True for Trees without Degree-2 Vertices

IF 0.6 4区 数学 Q3 MATHEMATICS
Yukihiro Murakami
{"title":"The Burning Number Conjecture is True for Trees without Degree-2 Vertices","authors":"Yukihiro Murakami","doi":"10.1007/s00373-024-02812-6","DOIUrl":null,"url":null,"abstract":"<p>Graph burning is a discrete time process which can be used to model the spread of social contagion. One is initially given a graph of unburned vertices. At each round (time step), one vertex is burned; unburned vertices with at least one burned neighbour from the previous round also becomes burned. The burning number of a graph is the fewest number of rounds required to burn the graph. It has been conjectured that for a graph on <i>n</i> vertices, the burning number is at most <span>\\(\\lceil \\sqrt{n}\\rceil \\)</span>. We show that the graph burning conjecture is true for trees without degree-2 vertices.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"80 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02812-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Graph burning is a discrete time process which can be used to model the spread of social contagion. One is initially given a graph of unburned vertices. At each round (time step), one vertex is burned; unburned vertices with at least one burned neighbour from the previous round also becomes burned. The burning number of a graph is the fewest number of rounds required to burn the graph. It has been conjectured that for a graph on n vertices, the burning number is at most \(\lceil \sqrt{n}\rceil \). We show that the graph burning conjecture is true for trees without degree-2 vertices.

Abstract Image

燃烧数猜想适用于没有度数为 2 的顶点的树
图燃烧是一个离散时间过程,可用于模拟社会传染的传播。最初给定的是一个由未燃烧顶点组成的图。在每一轮(时间步长)中,一个顶点被焚毁;在上一轮中至少有一个邻近顶点被焚毁的未焚毁顶点也会被焚毁。一个图的焚烧次数是焚烧该图所需的最少回合数。有人猜想,对于一个有 n 个顶点的图,燃烧次数最多为 \(\lceil \sqrt{n}\rceil \)。我们证明,对于没有度数为 2 的顶点的树,图燃烧猜想是真的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信