The Burning Number Conjecture is True for Trees without Degree-2 Vertices

Pub Date : 2024-06-25 DOI:10.1007/s00373-024-02812-6
Yukihiro Murakami
{"title":"The Burning Number Conjecture is True for Trees without Degree-2 Vertices","authors":"Yukihiro Murakami","doi":"10.1007/s00373-024-02812-6","DOIUrl":null,"url":null,"abstract":"<p>Graph burning is a discrete time process which can be used to model the spread of social contagion. One is initially given a graph of unburned vertices. At each round (time step), one vertex is burned; unburned vertices with at least one burned neighbour from the previous round also becomes burned. The burning number of a graph is the fewest number of rounds required to burn the graph. It has been conjectured that for a graph on <i>n</i> vertices, the burning number is at most <span>\\(\\lceil \\sqrt{n}\\rceil \\)</span>. We show that the graph burning conjecture is true for trees without degree-2 vertices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02812-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph burning is a discrete time process which can be used to model the spread of social contagion. One is initially given a graph of unburned vertices. At each round (time step), one vertex is burned; unburned vertices with at least one burned neighbour from the previous round also becomes burned. The burning number of a graph is the fewest number of rounds required to burn the graph. It has been conjectured that for a graph on n vertices, the burning number is at most \(\lceil \sqrt{n}\rceil \). We show that the graph burning conjecture is true for trees without degree-2 vertices.

Abstract Image

分享
查看原文
燃烧数猜想适用于没有度数为 2 的顶点的树
图燃烧是一个离散时间过程,可用于模拟社会传染的传播。最初给定的是一个由未燃烧顶点组成的图。在每一轮(时间步长)中,一个顶点被焚毁;在上一轮中至少有一个邻近顶点被焚毁的未焚毁顶点也会被焚毁。一个图的焚烧次数是焚烧该图所需的最少回合数。有人猜想,对于一个有 n 个顶点的图,燃烧次数最多为 \(\lceil \sqrt{n}\rceil \)。我们证明,对于没有度数为 2 的顶点的树,图燃烧猜想是真的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信