A review of coal permeability models including the internal swelling coefficient of matrix

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS
Shouqing Lu, Jiang Shi, Lei Jiao, Yankun Ma, Wei Li, Zhanyou Sa, Jie Liu, Taibiao Bei, Shengcheng Wang
{"title":"A review of coal permeability models including the internal swelling coefficient of matrix","authors":"Shouqing Lu, Jiang Shi, Lei Jiao, Yankun Ma, Wei Li, Zhanyou Sa, Jie Liu, Taibiao Bei, Shengcheng Wang","doi":"10.1007/s40789-024-00701-0","DOIUrl":null,"url":null,"abstract":"<p>Coal bed methane (CBM), the high-quality and efficient fuel, has caught the interest of many nations as they strive for environmentally friendly development. Therefore, the efficient exploitation and utilization of CBM has become one of the international focal research problems. A significant factor affecting the mining of CBM is coal permeability. To better capture the changes that occur during the extraction of CBM, the internal swelling coefficient of matrix (ISCM) has been gradually in permeability introduced into the permeability models, and such models have become an important type of the development of permeability models. The goal is to find out more precisely the evolution mechanism of the ISCM and its influence on the permeability models. In this paper, the selection of coal structure, determination of boundary conditions and influencing factors of permeability for were first analyzed. Then, according to the research process of ISCM, the permeability models including the ISCM were reviewed and divided into four phases: proposal phase, development phase, evaluation phase and display of internal structure phase. On the basis of the ISCM values in the current coal permeability models, the primary influencing factors and evolutionary laws of the ISCM are explored. The results obtained provide guidance for future theoretical refinement of permeability models with the ISCM.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"63 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00701-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Coal bed methane (CBM), the high-quality and efficient fuel, has caught the interest of many nations as they strive for environmentally friendly development. Therefore, the efficient exploitation and utilization of CBM has become one of the international focal research problems. A significant factor affecting the mining of CBM is coal permeability. To better capture the changes that occur during the extraction of CBM, the internal swelling coefficient of matrix (ISCM) has been gradually in permeability introduced into the permeability models, and such models have become an important type of the development of permeability models. The goal is to find out more precisely the evolution mechanism of the ISCM and its influence on the permeability models. In this paper, the selection of coal structure, determination of boundary conditions and influencing factors of permeability for were first analyzed. Then, according to the research process of ISCM, the permeability models including the ISCM were reviewed and divided into four phases: proposal phase, development phase, evaluation phase and display of internal structure phase. On the basis of the ISCM values in the current coal permeability models, the primary influencing factors and evolutionary laws of the ISCM are explored. The results obtained provide guidance for future theoretical refinement of permeability models with the ISCM.

Abstract Image

包括基质内部膨胀系数在内的煤炭渗透性模型综述
煤层气(CBM)作为一种优质高效的燃料,在许多国家努力实现环境友好型发展的过程中引起了他们的兴趣。因此,煤层气的高效开采和利用已成为国际焦点研究问题之一。影响煤层气开采的一个重要因素是煤的渗透性。为了更好地捕捉煤层气开采过程中发生的变化,基质内膨胀系数(ISCM)已逐渐在渗透率模型中引入,这类模型已成为渗透率模型发展的重要类型。我们的目标是更精确地探明 ISCM 的演化机理及其对渗透率模型的影响。本文首先分析了煤层结构的选择、边界条件的确定以及渗透率的影响因素。然后,根据 ISCM 的研究过程,对包括 ISCM 在内的透气性模型进行了梳理,并将其划分为四个阶段:提出阶段、开发阶段、评价阶段和内部结构展示阶段。在现有煤炭透气性模型中 ISCM 数值的基础上,探讨了 ISCM 的主要影响因素和演化规律。研究结果为今后利用 ISCM 对透气性模型进行理论完善提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信