Reentrant localisation transitions and anomalous spectral properties in off-diagonal quasiperiodic systems

Hugo Tabanelli, Claudio Castelnovo, Antonio Štrkalj
{"title":"Reentrant localisation transitions and anomalous spectral properties in off-diagonal quasiperiodic systems","authors":"Hugo Tabanelli, Claudio Castelnovo, Antonio Štrkalj","doi":"arxiv-2406.14193","DOIUrl":null,"url":null,"abstract":"We investigate the localisation properties of quasiperiodic tight-binding\nchains with hopping terms modulated by the interpolating\nAubry-Andr\\'e-Fibonacci (IAAF) function. This off-diagonal IAAF model allows\nfor a smooth and controllable interpolation between two paradigmatic\nquasiperiodic models: the Aubry-Andr\\'e and the Fibonacci model. Our analysis\nshows that the spectrum of this model can be divided into three principal\nbands, namely, two molecular bands at the edge of the spectrum and one atomic\nband in the middle, for all values of the interpolating parameter. We reveal\nthat the states in the molecular bands undergo multiple re-entrant localisation\ntransitions, a behaviour previously reported in the diagonal IAAF model. We\nlink the emergence of these reentrant phenomena to symmetry points of the\nquasiperiodic modulation and, with that, explain the main ground state\nproperties of the system. The atomic states in the middle band show no traces\nof localised phases and remain either extended or critical for any value of the\ninterpolating parameter. Using a renormalisation group approach, adapted from\nthe Fibonacci model, we explain the extended nature of the middle band. These\nfindings expand our knowledge of phase transitions within quasiperiodic systems\nand highlight the interplay between extended, critical, and localised states.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the localisation properties of quasiperiodic tight-binding chains with hopping terms modulated by the interpolating Aubry-Andr\'e-Fibonacci (IAAF) function. This off-diagonal IAAF model allows for a smooth and controllable interpolation between two paradigmatic quasiperiodic models: the Aubry-Andr\'e and the Fibonacci model. Our analysis shows that the spectrum of this model can be divided into three principal bands, namely, two molecular bands at the edge of the spectrum and one atomic band in the middle, for all values of the interpolating parameter. We reveal that the states in the molecular bands undergo multiple re-entrant localisation transitions, a behaviour previously reported in the diagonal IAAF model. We link the emergence of these reentrant phenomena to symmetry points of the quasiperiodic modulation and, with that, explain the main ground state properties of the system. The atomic states in the middle band show no traces of localised phases and remain either extended or critical for any value of the interpolating parameter. Using a renormalisation group approach, adapted from the Fibonacci model, we explain the extended nature of the middle band. These findings expand our knowledge of phase transitions within quasiperiodic systems and highlight the interplay between extended, critical, and localised states.
非对角准周期系统中的重入定位转换和反常谱特性
我们研究了具有由插值奥布里-安德鲁-斐波那契(IAAF)函数调制的跳变项的准周期紧结合链的定位特性。这种非对角线 IAAF 模型允许在两个典型的准周期模型:Aubry-Andr\'e 和 Fibonacci 模型之间进行平滑和可控的插值。我们的分析表明,在所有内插参数值下,该模型的光谱可分为三个主要带,即光谱边缘的两个分子带和中间的一个原子带。我们发现,分子带中的态发生了多次重入定位转变,这种行为之前在对角 IAAF 模型中已有报道。我们将这些重入现象的出现与类周期调制的对称点联系起来,从而解释了系统的主要基态性质。中间带的原子态没有显示出局部相位的痕迹,并且在任何插入参数值下都保持扩展或临界状态。我们利用一种改编自斐波那契模型的重正化群方法,解释了中间带的扩展性质。这些发现扩展了我们对准周期系统内相变的认识,并突出了扩展态、临界态和局部态之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信