Integrated Remote Sensing and Petrographic Guide to Delineate the Hydrothermal Alteration Zones Along the Phyllites of the Main Zawar Fold, Rajasthan, India
Sima Gorai, Nisha Rani, T. Vijaya Kumar, Bulusu Sreenivas
{"title":"Integrated Remote Sensing and Petrographic Guide to Delineate the Hydrothermal Alteration Zones Along the Phyllites of the Main Zawar Fold, Rajasthan, India","authors":"Sima Gorai, Nisha Rani, T. Vijaya Kumar, Bulusu Sreenivas","doi":"10.1007/s12524-024-01924-z","DOIUrl":null,"url":null,"abstract":"<p>This study integrates Remote Sensing data, field investigation, and petrography to analyze the Zawar Pb–Zn sulfide deposits, in the Paleoproterozoic Aravalli Supergroup rocks of NW India. Structural features of the study area are delineated using Remote Sensing and Shuttle Radar Topography Mission (SRTM) data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, is used to distinguish the major rock types and alteration zones. Our findings reveal that the Zawar belt is composed of phyllite, quartzite, carbonate, and, greywacke. Phyllites from the hinge of the Main Zawar Fold (MZF) provide critical insights into the distribution of monazite veins, and, support the evidence of hydrothermal alteration over the hinge area of the MZF. Textural evidence investigated by Scanning Electron Microscopic study (SEM) suggests that the monazite is of epigenetic hydrothermal origin, formed subsequently after the formation of the primary host rock. Energy Dispersive X-ray spectroscopic (EDS) study indicates that these monazites have an average composition, P<sub>2</sub>O<sub>5</sub>(17.85 wt.%), Ce<sub>2</sub>O<sub>3</sub> 14.49, La<sub>2</sub>O<sub>3</sub> 6.98, Nd<sub>2</sub>O<sub>3</sub> 5.39 and ThO<sub>2</sub> 1.60 wt.%, suggesting its hydrothermal origin.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"3 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01924-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study integrates Remote Sensing data, field investigation, and petrography to analyze the Zawar Pb–Zn sulfide deposits, in the Paleoproterozoic Aravalli Supergroup rocks of NW India. Structural features of the study area are delineated using Remote Sensing and Shuttle Radar Topography Mission (SRTM) data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, is used to distinguish the major rock types and alteration zones. Our findings reveal that the Zawar belt is composed of phyllite, quartzite, carbonate, and, greywacke. Phyllites from the hinge of the Main Zawar Fold (MZF) provide critical insights into the distribution of monazite veins, and, support the evidence of hydrothermal alteration over the hinge area of the MZF. Textural evidence investigated by Scanning Electron Microscopic study (SEM) suggests that the monazite is of epigenetic hydrothermal origin, formed subsequently after the formation of the primary host rock. Energy Dispersive X-ray spectroscopic (EDS) study indicates that these monazites have an average composition, P2O5(17.85 wt.%), Ce2O3 14.49, La2O3 6.98, Nd2O3 5.39 and ThO2 1.60 wt.%, suggesting its hydrothermal origin.
期刊介绍:
The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.