The holomorphic discrete series contribution to the generalized Whittaker Plancherel formula II. Non-tube type groups

Jan Frahm, Gestur Ólafsson, Bent Ørsted
{"title":"The holomorphic discrete series contribution to the generalized Whittaker Plancherel formula II. Non-tube type groups","authors":"Jan Frahm, Gestur Ólafsson, Bent Ørsted","doi":"10.1016/j.indag.2024.05.012","DOIUrl":null,"url":null,"abstract":"For every simple Hermitian Lie group , we consider a certain maximal parabolic subgroup whose unipotent radical is either abelian (if is of tube type) or two-step nilpotent (if is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of , the space of square-integrable sections of the homogeneous vector bundle over associated with an irreducible unitary representation of . Assuming that the central character of is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of into and show that the multiplicities are equal to the dimensions of the lowest -types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of . This kernel function carries all information about the holomorphic discrete series embedding, the lowest -type as functions on , as well as the associated Whittaker vectors.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.05.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For every simple Hermitian Lie group , we consider a certain maximal parabolic subgroup whose unipotent radical is either abelian (if is of tube type) or two-step nilpotent (if is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of , the space of square-integrable sections of the homogeneous vector bundle over associated with an irreducible unitary representation of . Assuming that the central character of is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of into and show that the multiplicities are equal to the dimensions of the lowest -types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of . This kernel function carries all information about the holomorphic discrete series embedding, the lowest -type as functions on , as well as the associated Whittaker vectors.
全形离散级数对广义惠特克-普朗切尔公式的贡献 II.非管型群
对于每一个简单赫米蒂李群 ,我们都考虑某个最大抛物线子群,它的单势根要么是无性的(如果是管型),要么是两步零势的(如果是非管型)。通过广义惠特克-普朗切尔公式,我们指的是普朗切尔分解,即与.的不可还原单元代表相关联的均相向量束的平方可积分截面空间。 假设.的中心特征包含在某个锥体中,我们构造了.的所有全形离散序列代表的嵌入,并证明其乘数等于最低类型的维数。这个核函数包含了全态离散级数嵌入的所有信息、作为函数的最低类型以及相关的惠特克向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信