Sharp estimates for distinguished random walks on affine buildings of type A˜r

IF 0.5 4区 数学 Q3 MATHEMATICS
Jean-Philippe Anker , Bruno Schapira , Bartosz Trojan
{"title":"Sharp estimates for distinguished random walks on affine buildings of type A˜r","authors":"Jean-Philippe Anker ,&nbsp;Bruno Schapira ,&nbsp;Bartosz Trojan","doi":"10.1016/j.indag.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><div><span>We study a distinguished random walk on affine buildings of type </span><span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mspace></mspace><mi>r</mi></mrow></msub></math></span> , which was already considered by Cartwright, Saloff-Coste and Woess. In rank <span><math><mrow><mi>r</mi><mspace></mspace><mo>=</mo><mspace></mspace><mn>2</mn></mrow></math></span>, it is the simple random walk and we obtain optimal global bounds for its transition density (same upper and lower bound, up to multiplicative constants). In the higher rank case, we obtain sharp uniform bounds in fairly large space–time regions which are sufficient for most applications.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 2","pages":"Pages 383-412"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772400065X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a distinguished random walk on affine buildings of type A˜r , which was already considered by Cartwright, Saloff-Coste and Woess. In rank r=2, it is the simple random walk and we obtain optimal global bounds for its transition density (same upper and lower bound, up to multiplicative constants). In the higher rank case, we obtain sharp uniform bounds in fairly large space–time regions which are sufficient for most applications.
型仿射建筑物上杰出随机游走的锐估计 [公式省略]
我们研究的是类型为 ,的仿射建筑物上的一种杰出随机漫步,卡特赖特、萨洛夫-科斯特和沃斯已经考虑过这种漫步。在秩为 , 的情况下,它是简单随机游走,我们得到了其过渡密度的最优全局边界(相同的上界和下界,直到乘法常数)。在秩较高的情况下,我们在相当大的时空区域内获得了尖锐的均匀边界,这足以满足大多数应用的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信