The $A$-philosophy for the Hardy $Z$-Function

Yochay Jerby
{"title":"The $A$-philosophy for the Hardy $Z$-Function","authors":"Yochay Jerby","doi":"arxiv-2406.06548","DOIUrl":null,"url":null,"abstract":"In recent works we have introduced the parameter space $\\mathcal{Z}_N$ of\n$A$-variations of the Hardy $Z$-function, $Z(t)$, whose elements are functions\nof the form \\begin{equation} \\label{eq:Z-sections} Z_N(t ; \\overline{a} ) =\n\\cos(\\theta(t))+ \\sum_{k=1}^{N} \\frac{a_k}{\\sqrt{k+1} } \\cos ( \\theta (t) -\n\\ln(k+1) t), \\end{equation} where $\\overline{a} = (a_1,...,a_N) \\in\n\\mathbb{R}^N$. The \\( A \\)-philosophy advocates that studying the discriminant\nhypersurface forming within such parameter spaces, often reveals essential\ninsights about the original mathematical object and its zeros. In this paper we\napply the $A$-philosophy to our space $\\mathcal{Z}_N$ by introducing \\(\n\\Delta_n(\\overline{a} ) \\) the $n$-th Gram discriminant of \\( Z(t) \\). We show\nthat the Riemann Hypothesis (RH) is equivalent to the corrected Gram's law \\[\n(-1)^n \\Delta_n(\\overline{1}) > 0, \\] for any $n \\in \\mathbb{Z}$. We further\nshow that the classical Gram's law \\( (-1)^n Z(g_n) >0\\) can be considered as a\nfirst-order approximation of our corrected law. The second-order approximation\nof $\\Delta_n (\\overline{a})$ is then shown to be related to shifts of Gram\npoints along the \\( t \\)-axis. This leads to the discovery of a new, previously\nunobserved, repulsion phenomena \\[ \\left| Z'(g_n) \\right| > 4 \\left| Z(g_n)\n\\right|, \\] for bad Gram points $g_n$ whose consecutive neighbours $g_{n \\pm\n1}$ are good. Our analysis of the \\(A\\)-variation space \\(\\mathcal{Z}_N\\)\nintroduces a wealth of new results on the zeros of \\(Z(t)\\), casting new light\non classical questions such as Gram's law, the Montgomery pair-correlation\nconjecture, and the RH, and also unveils previously unknown fundamental\nproperties.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.06548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent works we have introduced the parameter space $\mathcal{Z}_N$ of $A$-variations of the Hardy $Z$-function, $Z(t)$, whose elements are functions of the form \begin{equation} \label{eq:Z-sections} Z_N(t ; \overline{a} ) = \cos(\theta(t))+ \sum_{k=1}^{N} \frac{a_k}{\sqrt{k+1} } \cos ( \theta (t) - \ln(k+1) t), \end{equation} where $\overline{a} = (a_1,...,a_N) \in \mathbb{R}^N$. The \( A \)-philosophy advocates that studying the discriminant hypersurface forming within such parameter spaces, often reveals essential insights about the original mathematical object and its zeros. In this paper we apply the $A$-philosophy to our space $\mathcal{Z}_N$ by introducing \( \Delta_n(\overline{a} ) \) the $n$-th Gram discriminant of \( Z(t) \). We show that the Riemann Hypothesis (RH) is equivalent to the corrected Gram's law \[ (-1)^n \Delta_n(\overline{1}) > 0, \] for any $n \in \mathbb{Z}$. We further show that the classical Gram's law \( (-1)^n Z(g_n) >0\) can be considered as a first-order approximation of our corrected law. The second-order approximation of $\Delta_n (\overline{a})$ is then shown to be related to shifts of Gram points along the \( t \)-axis. This leads to the discovery of a new, previously unobserved, repulsion phenomena \[ \left| Z'(g_n) \right| > 4 \left| Z(g_n) \right|, \] for bad Gram points $g_n$ whose consecutive neighbours $g_{n \pm 1}$ are good. Our analysis of the \(A\)-variation space \(\mathcal{Z}_N\) introduces a wealth of new results on the zeros of \(Z(t)\), casting new light on classical questions such as Gram's law, the Montgomery pair-correlation conjecture, and the RH, and also unveils previously unknown fundamental properties.
哈代 Z$函数的 A$哲学
在最近的工作中,我们引入了哈代$Z$函数$Z(t)$的$A$变量的参数空间$\mathcal{Z}_N$,其元素是形式为 \begin{equation}的函数。\标注{eq:Z-截面}的函数Z_N(t; \overline{a} ) =\cos(\theta(t))+ \sum_{k=1}^{N}\frac{a_k}{\sqrt{k+1}}\cos ( \theta (t) -\ln(k+1) t), \end{equation} 其中 $overline{a} = (a_1,...,a_N) \in\mathbb{R}^N$.A \)哲学认为,研究在这样的参数空间中形成的辨析曲面,往往能揭示出关于原始数学对象及其零点的本质观点。本文通过引入 \(\Delta_n(\overline{a} ) \) 即 \( Z(t) \) 的 $n$th 格兰判别式,将 $A$- 哲学应用于我们的空间 $\mathcal{Z}_N$。我们证明,对于 \mathbb{Z}$ 中的任意 $n ,黎曼假说(RH)等价于修正的格拉姆定律 \[(-1)^n \Delta_n(\overline{1}) > 0, \]。我们进一步证明,经典的格拉姆定律 \( (-1)^n Z(g_n) >0\) 可以看作是我们修正定律的一阶近似。然后,$\Delta_n (\overline{a})$的二阶近似值被证明与格拉姆点沿着\( t \)轴的移动有关。这就发现了一种新的、以前没有观察到的、排斥现象\[ \left| Z'(g_n) \right| > 4 \left| Z(g_n)\right|, \],即对于连续相邻的 $g_{n \pm1}$ 都是好的坏的格点 $g_n$。我们对 \(A\)-variation space \(\mathcal{Z}_N\)的分析引入了大量关于 \(Z(t)\) 的零点的新结果,为诸如格拉姆定律、蒙哥马利对相关猜想和 RH 等经典问题带来了新的启示,同时也揭示了以前未知的基本性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信