On the complexity of symmetric vs. functional PCSPs

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Tamio-Vesa Nakajima, Stanislav Živný
{"title":"On the complexity of symmetric vs. functional PCSPs","authors":"Tamio-Vesa Nakajima, Stanislav Živný","doi":"10.1145/3673655","DOIUrl":null,"url":null,"abstract":"<p>The complexity of the <i>promise constraint satisfaction problem</i> \\(\\operatorname{PCSP}(\\mathbf{A},\\mathbf{B})\\) is largely unknown, even for symmetric \\(\\mathbf{A}\\) and \\(\\mathbf{B}\\), except for the case when \\(\\mathbf{A}\\) and \\(\\mathbf{B}\\) are Boolean.</p><p>First, we establish a dichotomy for \\(\\operatorname{PCSP}(\\mathbf{A},\\mathbf{B})\\) where \\(\\mathbf{A},\\mathbf{B}\\) are symmetric, \\(\\mathbf{B}\\) is <i>functional</i> (i.e. any \\(r-1\\) elements of an \\(r\\)-ary tuple uniquely determines the last one), and \\((\\mathbf{A},\\mathbf{B})\\) satisfies technical conditions we introduce called <i>dependency</i> and <i>additivity</i>. This result implies a dichotomy for \\(\\operatorname{PCSP}(\\mathbf{A},\\mathbf{B})\\) with \\(\\mathbf{A},\\mathbf{B}\\) symmetric and \\(\\mathbf{B}\\) functional if (i) \\(\\mathbf{A}\\) is Boolean, or (ii) \\(\\mathbf{A}\\) is a hypergraph of a small uniformity, or (iii) \\(\\mathbf{A}\\) has a relation \\(R^{\\mathbf{A}}\\) of arity at least 3 such that the hypergraph diameter of \\((A,R^{\\mathbf{A}})\\) is at most 1.</p><p>Second, we show that for \\(\\operatorname{PCSP}(\\mathbf{A},\\mathbf{B})\\), where \\(\\mathbf{A}\\) and \\(\\mathbf{B}\\) contain a single relation, \\(\\mathbf{A}\\) satisfies a technical condition called <i>balancedness</i>, and \\(\\mathbf{B}\\) is arbitrary, the combined <i>basic linear programming</i> relaxation (\\(\\operatorname{BLP}\\)) and the <i>affine integer programming</i> relaxation (\\(\\operatorname{AIP}\\)) is no more powerful than the (in general strictly weaker) \\(\\operatorname{AIP}\\) relaxation. Balanced \\(\\mathbf{A}\\) include symmetric \\(\\mathbf{A}\\) or, more generally, \\(\\mathbf{A}\\) preserved by a transitive permutation group.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"16 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3673655","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of the promise constraint satisfaction problem \(\operatorname{PCSP}(\mathbf{A},\mathbf{B})\) is largely unknown, even for symmetric \(\mathbf{A}\) and \(\mathbf{B}\), except for the case when \(\mathbf{A}\) and \(\mathbf{B}\) are Boolean.

First, we establish a dichotomy for \(\operatorname{PCSP}(\mathbf{A},\mathbf{B})\) where \(\mathbf{A},\mathbf{B}\) are symmetric, \(\mathbf{B}\) is functional (i.e. any \(r-1\) elements of an \(r\)-ary tuple uniquely determines the last one), and \((\mathbf{A},\mathbf{B})\) satisfies technical conditions we introduce called dependency and additivity. This result implies a dichotomy for \(\operatorname{PCSP}(\mathbf{A},\mathbf{B})\) with \(\mathbf{A},\mathbf{B}\) symmetric and \(\mathbf{B}\) functional if (i) \(\mathbf{A}\) is Boolean, or (ii) \(\mathbf{A}\) is a hypergraph of a small uniformity, or (iii) \(\mathbf{A}\) has a relation \(R^{\mathbf{A}}\) of arity at least 3 such that the hypergraph diameter of \((A,R^{\mathbf{A}})\) is at most 1.

Second, we show that for \(\operatorname{PCSP}(\mathbf{A},\mathbf{B})\), where \(\mathbf{A}\) and \(\mathbf{B}\) contain a single relation, \(\mathbf{A}\) satisfies a technical condition called balancedness, and \(\mathbf{B}\) is arbitrary, the combined basic linear programming relaxation (\(\operatorname{BLP}\)) and the affine integer programming relaxation (\(\operatorname{AIP}\)) is no more powerful than the (in general strictly weaker) \(\operatorname{AIP}\) relaxation. Balanced \(\mathbf{A}\) include symmetric \(\mathbf{A}\) or, more generally, \(\mathbf{A}\) preserved by a transitive permutation group.

关于对称 PCSP 与功能 PCSP 的复杂性
承诺约束满足问题(\operatorname{PCSP}(\mathbf{A},\mathbf{B}))的复杂性在很大程度上是未知的,即使是对称的\(\mathbf{A}\)和\(\mathbf{B}\),除了\(\mathbf{A}\)和\(\mathbf{B}\)是布尔的情况。首先,我们为 \(\operatorname{PCSP}(\mathbf{A},\mathbf{B})\) 建立一个二分法,其中 \(\mathbf{A},\mathbf{B}\) 是对称的, \(\mathbf{B}\) 是函数式的(即一个元组的任何(r-1)个元素都唯一地决定了最后一个元素),并且((\mathbf{A},\mathbf{B}))满足我们引入的技术条件,即依赖性和可加性。如果 (i) \\(\mathbf{A}\) 是布尔的,或者 (ii) \\(\mathbf{A}\) 是函数的,那么这个结果就意味着 \(\operatorname{PCSP}(\mathbf{A},\mathbf{B}))的二分法,即 \(\mathbf{A},\mathbf{B}\)是对称的,而 \(\mathbf{B}\)是函数的、或者(ii) \(\mathbf{A}\)是一个均匀性很小的超图,或者(iii) \(\mathbf{A}\)有一个至少为 3 的关系式 \(R^{mathbf{A}}\),使得 \((A,R^{/mathbf{A}})\)的超图直径最多为 1。其次,我们证明了对于 \(operatorname{PCSP}(\mathbf{A},\mathbf{B})\),其中 \(\mathbf{A}\) 和 \(\mathbf{B}\)包含一个关系, \(\mathbf{A}\)满足一个称为平衡性的技术条件,并且 \(\mathbf{B}\)是任意的、基本线性规划松弛(\(\operatorname{BLP}\))和仿射整数规划松弛(\(\operatorname{AIP}\))的组合并不比(一般来说严格来说较弱的)\(\operatorname{AIP}\)松弛更强大。平衡的 \(\mathbf{A}\) 包括对称的 \(\mathbf{A}\) 或者,更一般地说,由传递性置换组保存的 \(\mathbf{A}\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信