{"title":"Demonstration scale chemical–physical treatment and agricultural reuse of highly saline textile wastewater","authors":"Fatma Arous, Chadlia Hamdi, Salma Bessadok, Soumaya Boudagga, Ayda Aydi, Wentao Li, Stathis Kyriacou, Davide Pinelli, Dario Frascari, Atef Jaouani","doi":"10.1111/wej.12946","DOIUrl":null,"url":null,"abstract":"This study aimed to develop an energy‐efficient process for treating highly saline textile wastewater (TWW) in a 10 m<jats:sup>3</jats:sup>/day pilot plant and evaluate forage sorghum irrigation with treated wastewater in terms of crop production and soil and irrigation device performance. The TWW treatment pilot plant, consisting of a coagulation/flocculation unit followed by a sand filter and an anion exchange resin column, produced treated effluent that complied with the permissible limits specified in the ISO 16075‐2:2020 standard for Category C irrigation water. The corresponding average energy consumption was 1.77 kWh/m<jats:sup>3</jats:sup>. Reusing treated TWW for forage sorghum irrigation over a 13‐week cycle yielded crop performances comparable with freshwater irrigation, with no negative impact on the irrigation system. Although soil profiles were similar between treated TWW and freshwater irrigation, both soils featured an increase in electrical conductivity, which may reversibly or irreversibly affect soil quality and damage salt‐sensitive crops. These findings demonstrate the effective treatment and reuse of saline TWW for irrigating salt‐tolerant crops, offering significant implications for industrial wastewater management and cropping patterns in arid and semi‐arid regions.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12946","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to develop an energy‐efficient process for treating highly saline textile wastewater (TWW) in a 10 m3/day pilot plant and evaluate forage sorghum irrigation with treated wastewater in terms of crop production and soil and irrigation device performance. The TWW treatment pilot plant, consisting of a coagulation/flocculation unit followed by a sand filter and an anion exchange resin column, produced treated effluent that complied with the permissible limits specified in the ISO 16075‐2:2020 standard for Category C irrigation water. The corresponding average energy consumption was 1.77 kWh/m3. Reusing treated TWW for forage sorghum irrigation over a 13‐week cycle yielded crop performances comparable with freshwater irrigation, with no negative impact on the irrigation system. Although soil profiles were similar between treated TWW and freshwater irrigation, both soils featured an increase in electrical conductivity, which may reversibly or irreversibly affect soil quality and damage salt‐sensitive crops. These findings demonstrate the effective treatment and reuse of saline TWW for irrigating salt‐tolerant crops, offering significant implications for industrial wastewater management and cropping patterns in arid and semi‐arid regions.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure