{"title":"Action of higher derivations on semiprime rings","authors":"Shakir Ali, Vaishali Varshney","doi":"10.1515/gmj-2024-2026","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0341.png\"/> <jats:tex-math>{m,n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the fixed positive integers and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a ring. In 1978, Herstein proved that a 2-torsion free prime ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is commutative if there is a nonzero derivation <jats:italic>d</jats:italic> of <jats:italic>R</jats:italic> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϱ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0157.png\"/> <jats:tex-math>{[d(\\varrho),d(\\xi)]=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>ϱ</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>R</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0243.png\"/> <jats:tex-math>{\\varrho,\\xi\\in R}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we study the above mentioned classical result for higher derivations and describe the structure of semiprime rings by using the invariance property of prime ideals under higher derivations. Precisely, apart from proving some other important results, we prove the following. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0108.png\"/> <jats:tex-math>{(d_{i})_{i\\in\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>g</m:mi> <m:mi>j</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0112.png\"/> <jats:tex-math>{(g_{j})_{j\\in\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be two higher derivations of semiprime ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϱ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi>g</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mi>Z</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">ℛ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0165.png\"/> <jats:tex-math>{[d_{n}(\\varrho),g_{m}(\\xi)]\\in Z(\\mathcal{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>ϱ</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi mathvariant=\"script\">ℐ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0244.png\"/> <jats:tex-math>{\\varrho,\\xi\\in\\mathcal{I}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℐ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0218.png\"/> <jats:tex-math>{\\mathcal{I}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an ideal of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then either <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is commutative or some linear combination of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0108.png\"/> <jats:tex-math>{(d_{i})_{i\\in\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> sends <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">ℛ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0139.png\"/> <jats:tex-math>{Z(\\mathcal{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to zero or some linear combination of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>g</m:mi> <m:mi>j</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0112.png\"/> <jats:tex-math>{(g_{j})_{j\\in\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> sends <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">ℛ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0139.png\"/> <jats:tex-math>{Z(\\mathcal{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to zero. We enrich our results with examples that show the necessity of their assumptions. Finally, we conclude our paper with a direction for further research.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let m,n{m,n} be the fixed positive integers and let ℛ{\mathcal{R}} be a ring. In 1978, Herstein proved that a 2-torsion free prime ring ℛ{\mathcal{R}} is commutative if there is a nonzero derivation d of R such that [d(ϱ),d(ξ)]=0{[d(\varrho),d(\xi)]=0} for all ϱ,ξ∈R{\varrho,\xi\in R}. In this article, we study the above mentioned classical result for higher derivations and describe the structure of semiprime rings by using the invariance property of prime ideals under higher derivations. Precisely, apart from proving some other important results, we prove the following. Let (di)i∈ℕ{(d_{i})_{i\in\mathbb{N}}} and (gj)j∈ℕ{(g_{j})_{j\in\mathbb{N}}} be two higher derivations of semiprime ring ℛ{\mathcal{R}} such that [dn(ϱ),gm(ξ)]∈Z(ℛ){[d_{n}(\varrho),g_{m}(\xi)]\in Z(\mathcal{R})} for all ϱ,ξ∈ℐ{\varrho,\xi\in\mathcal{I}}, where ℐ{\mathcal{I}} is an ideal of ℛ{\mathcal{R}}. Then either ℛ{\mathcal{R}} is commutative or some linear combination of (di)i∈ℕ{(d_{i})_{i\in\mathbb{N}}} sends Z(ℛ){Z(\mathcal{R})} to zero or some linear combination of (gj)j∈ℕ{(g_{j})_{j\in\mathbb{N}}} sends Z(ℛ){Z(\mathcal{R})} to zero. We enrich our results with examples that show the necessity of their assumptions. Finally, we conclude our paper with a direction for further research.
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.