Nonlinear design, analysis, and testing of a single-stage compliant orthogonal displacement amplifier with a single input force for microgrippers

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Weilin Chen, Zuyang Fan, Qinghua Lu, Yujie Xu, Zhihang Li, Huiling Wei, Qinghua Zhang and Lufeng Luo
{"title":"Nonlinear design, analysis, and testing of a single-stage compliant orthogonal displacement amplifier with a single input force for microgrippers","authors":"Weilin Chen, Zuyang Fan, Qinghua Lu, Yujie Xu, Zhihang Li, Huiling Wei, Qinghua Zhang and Lufeng Luo","doi":"10.1088/1361-6439/ad5a19","DOIUrl":null,"url":null,"abstract":"To achieve dexterous and stable micro/nanomanipulation, a large grasping stroke, compact design, and parallel grasping are required for microgrippers; thus, a single-stage compliant orthogonal displacement amplifier (CODA) with a single input force would be an ideal transmission mechanism. However, the existing small-deflection-based design schemes cannot adapt to large deflections or shearing effect, thereby affecting the orthogonal movement transformation accuracy. This study proposed, analyzed, and experimentally investigated a nonlinear design scheme for a single-stage CODA with a single input force. First, the nonlinear design principle is described qualitatively. By combining closed-form analytical modelling, finite element analysis, and numerical fitting, the nonlinear extent of a pre-set variable cross-sectional beam in the CODA is formulated. By utilizing the beam constraint model and small-deflection-based modelling, the nonlinear extent of the undetermined uniform straight beam in the CODA is derived. Based on the design principle and nonlinear models, a nonlinear design scheme is proposed quantitatively. Finite element simulations and experimental tests are conducted to verify the proposed scheme, and the limitations of our previous study are revealed.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"4 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad5a19","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve dexterous and stable micro/nanomanipulation, a large grasping stroke, compact design, and parallel grasping are required for microgrippers; thus, a single-stage compliant orthogonal displacement amplifier (CODA) with a single input force would be an ideal transmission mechanism. However, the existing small-deflection-based design schemes cannot adapt to large deflections or shearing effect, thereby affecting the orthogonal movement transformation accuracy. This study proposed, analyzed, and experimentally investigated a nonlinear design scheme for a single-stage CODA with a single input force. First, the nonlinear design principle is described qualitatively. By combining closed-form analytical modelling, finite element analysis, and numerical fitting, the nonlinear extent of a pre-set variable cross-sectional beam in the CODA is formulated. By utilizing the beam constraint model and small-deflection-based modelling, the nonlinear extent of the undetermined uniform straight beam in the CODA is derived. Based on the design principle and nonlinear models, a nonlinear design scheme is proposed quantitatively. Finite element simulations and experimental tests are conducted to verify the proposed scheme, and the limitations of our previous study are revealed.
单级顺应式正交位移放大器的非线性设计、分析和测试(用于微型夹具的单一输入力
为了实现灵巧稳定的微型/纳米机械手操作,微型机械手需要大抓取行程、紧凑设计和平行抓取;因此,单级顺应式正交位移放大器(CODA)与单一输入力将是理想的传动机构。然而,现有的基于小挠度的设计方案无法适应大挠度或剪切效应,从而影响了正交运动转换精度。本研究提出了一种单输入力单级 CODA 的非线性设计方案,并对其进行了分析和实验研究。首先,对非线性设计原理进行了定性描述。通过结合闭式分析建模、有限元分析和数值拟合,提出了 CODA 中预设变截面梁的非线性程度。利用梁约束模型和基于小挠度的建模,推导出 CODA 中未确定均匀直梁的非线性范围。根据设计原理和非线性模型,定量提出了非线性设计方案。通过有限元模拟和实验测试来验证所提出的方案,并揭示了我们之前研究的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信