{"title":"Edge smoothness enhancement of digital lithography based on the DMDs collaborative modulation","authors":"Jingya Zhang, Ningning Luo and Deyuan Chen","doi":"10.1088/1361-6439/ad58e9","DOIUrl":null,"url":null,"abstract":"The rough saw-tooth edge caused by the inherent microstructures of digital micromirror device (DMD) will reduce the quality of the lithography pattern. Comprehensively considering the manufacturing efficiency, precision and cost, we propose a DMDs collaborative modulation lithography method to improve the smoothness of the lithography pattern edge. Through combining two misaligned DMDs to collaboratively modulate exposure dose, the better edge smoothness can be achieved. Collaborative exposure with 1/2 DMD pixel misalignment and 1/4 DMD pixel misalignment are both implemented to form the step-shape lithography patterns. The experimental results show that the saw-tooth edge can approximate to a straight line when increasing the number of times of the collaborative exposure. Further error analysis indicates it is effective to improve the edge smoothness while ensuring the lithography quality by using the collaborative modulation lithography. These results indicate that the DMDs collaborative modulation lithography is a promising technique for fabrication of microstructures, which may be a solution for balancing the fabrication precision, efficiency and cost.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"26 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad58e9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rough saw-tooth edge caused by the inherent microstructures of digital micromirror device (DMD) will reduce the quality of the lithography pattern. Comprehensively considering the manufacturing efficiency, precision and cost, we propose a DMDs collaborative modulation lithography method to improve the smoothness of the lithography pattern edge. Through combining two misaligned DMDs to collaboratively modulate exposure dose, the better edge smoothness can be achieved. Collaborative exposure with 1/2 DMD pixel misalignment and 1/4 DMD pixel misalignment are both implemented to form the step-shape lithography patterns. The experimental results show that the saw-tooth edge can approximate to a straight line when increasing the number of times of the collaborative exposure. Further error analysis indicates it is effective to improve the edge smoothness while ensuring the lithography quality by using the collaborative modulation lithography. These results indicate that the DMDs collaborative modulation lithography is a promising technique for fabrication of microstructures, which may be a solution for balancing the fabrication precision, efficiency and cost.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.