Efficient and Parallel Solution of High-Order Continuous Time Galerkin for Dissipative and Wave Propagation Problems

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhiming Chen, Yong Liu
{"title":"Efficient and Parallel Solution of High-Order Continuous Time Galerkin for Dissipative and Wave Propagation Problems","authors":"Zhiming Chen, Yong Liu","doi":"10.1137/23m1572787","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2073-A2100, June 2024. <br/> Abstract. We propose efficient and parallel algorithms for the implementation of the high-order continuous time Galerkin method for dissipative and wave propagation problems. By using Legendre polynomials as shape functions, we obtain a special structure of the stiffness matrix that allows us to extend the diagonal Padé approximation to solve ordinary differential equations with source terms. The unconditional stability, [math] error estimates, and [math] superconvergence at the nodes of the continuous time Galerkin method are proved. Numerical examples confirm our theoretical results.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1572787","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2073-A2100, June 2024.
Abstract. We propose efficient and parallel algorithms for the implementation of the high-order continuous time Galerkin method for dissipative and wave propagation problems. By using Legendre polynomials as shape functions, we obtain a special structure of the stiffness matrix that allows us to extend the diagonal Padé approximation to solve ordinary differential equations with source terms. The unconditional stability, [math] error estimates, and [math] superconvergence at the nodes of the continuous time Galerkin method are proved. Numerical examples confirm our theoretical results.
耗散和波传播问题的高阶连续时间 Galerkin 高效并行解法
SIAM 科学计算期刊》,第 46 卷第 3 期,第 A2073-A2100 页,2024 年 6 月。 摘要。我们提出了针对耗散和波传播问题实现高阶连续时间 Galerkin 方法的高效并行算法。通过使用 Legendre 多项式作为形状函数,我们获得了刚度矩阵的特殊结构,从而可以扩展对角线 Padé 近似来求解带源项的常微分方程。我们证明了连续时间 Galerkin 方法的无条件稳定性、[数学] 误差估计和节点处的[数学] 超收敛性。数值实例证实了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信