A Riemannian Dimension-Reduced Second-Order Method with Application in Sensor Network Localization

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Tianyun Tang, Kim-Chuan Toh, Nachuan Xiao, Yinyu Ye
{"title":"A Riemannian Dimension-Reduced Second-Order Method with Application in Sensor Network Localization","authors":"Tianyun Tang, Kim-Chuan Toh, Nachuan Xiao, Yinyu Ye","doi":"10.1137/23m1567229","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2025-A2046, June 2024. <br/> Abstract. In this paper, we propose a cubic-regularized Riemannian optimization method (RDRSOM), which partially exploits the second-order information and achieves the iteration complexity of [math]. In order to reduce the per-iteration computational cost, we further propose a practical version of RDRSOM which is an extension of the well-known Barzilai–Borwein method, which enjoys the worst-case iteration complexity of [math]. Moreover, under more stringent conditions, RDRSOM achieves the iteration complexity of [math]. We apply our method to solve a nonlinear formulation of the wireless sensor network localization problem whose feasible set is a Riemannian manifold that has not been considered in the literature before. Numerical experiments are conducted to verify the high efficiency of our algorithm compared to state-of-the-art Riemannian optimization methods and other nonlinear solvers.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1567229","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2025-A2046, June 2024.
Abstract. In this paper, we propose a cubic-regularized Riemannian optimization method (RDRSOM), which partially exploits the second-order information and achieves the iteration complexity of [math]. In order to reduce the per-iteration computational cost, we further propose a practical version of RDRSOM which is an extension of the well-known Barzilai–Borwein method, which enjoys the worst-case iteration complexity of [math]. Moreover, under more stringent conditions, RDRSOM achieves the iteration complexity of [math]. We apply our method to solve a nonlinear formulation of the wireless sensor network localization problem whose feasible set is a Riemannian manifold that has not been considered in the literature before. Numerical experiments are conducted to verify the high efficiency of our algorithm compared to state-of-the-art Riemannian optimization methods and other nonlinear solvers.
应用于传感器网络定位的黎曼降维二阶方法
SIAM 科学计算期刊》,第 46 卷第 3 期,第 A2025-A2046 页,2024 年 6 月。 摘要本文提出了一种立方规则化黎曼优化方法(RDRSOM),该方法部分利用了二阶信息,达到了[math]的迭代复杂度。为了降低每次迭代的计算成本,我们进一步提出了 RDRSOM 的实用版本,它是著名的 Barzilai-Borwein 方法的扩展,可达到 [math] 的最坏情况迭代复杂度。此外,在更严格的条件下,RDRSOM 还能达到 [math] 的迭代复杂度。我们将我们的方法应用于解决无线传感器网络定位问题的一个非线性问题,该问题的可行集是一个黎曼流形,之前的文献从未考虑过这个问题。通过数值实验,我们验证了与最先进的黎曼优化方法和其他非线性求解器相比,我们的算法具有很高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信