Osculatory Dynamics: Framework for the Analysis of Oscillatory Systems

Marco Thiel
{"title":"Osculatory Dynamics: Framework for the Analysis of Oscillatory Systems","authors":"Marco Thiel","doi":"arxiv-2407.00235","DOIUrl":null,"url":null,"abstract":"Intractable phase dynamics often challenge our understanding of complex\noscillatory systems, hindering the exploration of synchronisation, chaos, and\nemergent phenomena across diverse fields. We introduce a novel conceptual\nframework for phase analysis, using the osculating circle to construct a\nco-moving coordinate system, which allows us to define a unique phase of the\nsystem. This coordinate independent, geometrical technique allows dissecting\nintricate local phase dynamics, even in regimes where traditional methods fail.\nOur methodology enables the analysis of a wider range of complex systems which\nwere previously deemed intractable.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intractable phase dynamics often challenge our understanding of complex oscillatory systems, hindering the exploration of synchronisation, chaos, and emergent phenomena across diverse fields. We introduce a novel conceptual framework for phase analysis, using the osculating circle to construct a co-moving coordinate system, which allows us to define a unique phase of the system. This coordinate independent, geometrical technique allows dissecting intricate local phase dynamics, even in regimes where traditional methods fail. Our methodology enables the analysis of a wider range of complex systems which were previously deemed intractable.
振荡动力学:振荡系统分析框架
难以理解的相位动力学经常挑战我们对复杂振荡系统的理解,阻碍了我们对同步、混沌和各领域突发现象的探索。我们为相位分析引入了一个新颖的概念框架,利用摆动圆来构建一个非移动坐标系,从而定义系统的独特相位。这种独立于坐标的几何技术可以剖析错综复杂的局部相位动力学,甚至在传统方法失效的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信