Nour El Sabbagh, Margherita Bazzoni, Yuliia Horbenko, Aurélie Bernard, Daniel Cortés-Borda, Patrick Giraudeau, François-Xavier Felpin and Jean-Nicolas Dumez
{"title":"Autonomous reaction self-optimization using in-line high-field NMR spectroscopy†","authors":"Nour El Sabbagh, Margherita Bazzoni, Yuliia Horbenko, Aurélie Bernard, Daniel Cortés-Borda, Patrick Giraudeau, François-Xavier Felpin and Jean-Nicolas Dumez","doi":"10.1039/D4RE00270A","DOIUrl":null,"url":null,"abstract":"<p >Autonomous self-optimization in flow is a powerful approach to efficiently optimize chemical transformations in a high dimensional space. Self-optimizing flow reactors combine automated flow devices with feedback optimization algorithms, which are powered by process analytical technology. In this contribution, we introduce the concept of autonomous self-optimizing flow reactors guided by in-line high-field NMR spectroscopy. We designed an autonomous experimental setup, combining an automated flow reactor with a high-field NMR spectrometer and a feedback optimization algorithm. User-friendly interfaces were developed for straightforward input of experimental parameters and precise control of equipment. Using 1D <small><sup>1</sup></small>H NMR spectroscopy with a solvent suppression method, we achieved accurate quantitative measurements. Self-optimization utilizing the Nelder–Mead algorithm to maximize either the yield or the throughput of a formal [3 + 3] cycloaddition was conducted through the fine-tuning of the residence time, stoichiometry, and catalyst loading as input variables. The integration of high-field NMR within autonomous flow systems promises enhanced precision and efficiency in chemical synthesis optimization, particularly for complex reaction mixtures, setting the stage for advances in chemical synthesis.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2599-2609"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00270a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous self-optimization in flow is a powerful approach to efficiently optimize chemical transformations in a high dimensional space. Self-optimizing flow reactors combine automated flow devices with feedback optimization algorithms, which are powered by process analytical technology. In this contribution, we introduce the concept of autonomous self-optimizing flow reactors guided by in-line high-field NMR spectroscopy. We designed an autonomous experimental setup, combining an automated flow reactor with a high-field NMR spectrometer and a feedback optimization algorithm. User-friendly interfaces were developed for straightforward input of experimental parameters and precise control of equipment. Using 1D 1H NMR spectroscopy with a solvent suppression method, we achieved accurate quantitative measurements. Self-optimization utilizing the Nelder–Mead algorithm to maximize either the yield or the throughput of a formal [3 + 3] cycloaddition was conducted through the fine-tuning of the residence time, stoichiometry, and catalyst loading as input variables. The integration of high-field NMR within autonomous flow systems promises enhanced precision and efficiency in chemical synthesis optimization, particularly for complex reaction mixtures, setting the stage for advances in chemical synthesis.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.