On comparing the coefficients of general product L-functions

Guodong Hua
{"title":"On comparing the coefficients of general product L-functions","authors":"Guodong Hua","doi":"10.1007/s13226-024-00629-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>f</i> and <i>g</i> be two distinct primitive holomorphic cusp forms of even integral weights <span>\\(k_{1}\\)</span> and <span>\\(k_{2}\\)</span> for the full modular group <span>\\(\\Gamma =SL(2,\\mathbb {Z})\\)</span>, respectively. Denote by <span>\\(\\lambda _{f\\otimes f\\otimes \\cdots \\otimes _{l} f}(n)\\)</span> and <span>\\(\\lambda _{g\\otimes g\\otimes \\cdots \\otimes _{l} g}(n)\\)</span> the <i>n</i>th normalized coefficients of the <i>l</i>-fold product product <i>L</i>-functions attached to <i>f</i> and <i>g</i>, respectively. In this paper, we establish a lower bound for the analytic density of the set </p><span>$$\\begin{aligned} \\big \\{ p ~ : ~ \\lambda _{f\\otimes f\\otimes \\cdots \\otimes _{l} f}(p) &lt; \\lambda _{g\\otimes g\\otimes \\cdots \\otimes _{l} g}(p)\\big \\}, \\end{aligned}$$</span><p>where <span>\\(l\\geqslant 4\\)</span> is any fixed integer. By analogy, we also establish some similar density results of the above supported on certain binary quadratic form.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00629-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let f and g be two distinct primitive holomorphic cusp forms of even integral weights \(k_{1}\) and \(k_{2}\) for the full modular group \(\Gamma =SL(2,\mathbb {Z})\), respectively. Denote by \(\lambda _{f\otimes f\otimes \cdots \otimes _{l} f}(n)\) and \(\lambda _{g\otimes g\otimes \cdots \otimes _{l} g}(n)\) the nth normalized coefficients of the l-fold product product L-functions attached to f and g, respectively. In this paper, we establish a lower bound for the analytic density of the set

$$\begin{aligned} \big \{ p ~ : ~ \lambda _{f\otimes f\otimes \cdots \otimes _{l} f}(p) < \lambda _{g\otimes g\otimes \cdots \otimes _{l} g}(p)\big \}, \end{aligned}$$

where \(l\geqslant 4\) is any fixed integer. By analogy, we also establish some similar density results of the above supported on certain binary quadratic form.

关于一般乘积 L 函数系数的比较
让 f 和 g 分别是全模群\(\Gamma =SL(2,\mathbb {Z})\)的两个不同的偶积分权重为 \(k_{1}\)和 \(k_{2}\)的原始全形顶点形式。分别用 \(\lambda _{f\otimes f\otimes \cdots \otimes _{l} f}(n)\) 和 \(\lambda _{g\otimes g\otimes \cdots \otimes _{l} g}(n)\) 表示连接到 f 和 g 的 l 折积乘 L 函数的 n 次归一化系数。在本文中,我们建立了集合 $$\begin{aligned} 的解析密度下限。\p ~ : ~ \lambda _{f\otimes f\otimes \cdots \otimes _{l} f}(p) < \lambda _{g\otimes g\otimes \cdots \otimes _{l} g}(p)\big \}, \end{aligned}$$其中 \(l\geqslant 4\) 是任意固定整数。通过类比,我们还建立了上述支持某些二元二次型的类似密度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信