{"title":"Elastic Solids with Strain-Gradient Elastic Boundary Surfaces","authors":"C. Rodriguez","doi":"10.1007/s10659-024-10073-w","DOIUrl":null,"url":null,"abstract":"<div><p>Recent works have shown that in contrast to classical linear elastic fracture mechanics, endowing crack fronts in a brittle Green-elastic solid with Steigmann-Ogden surface elasticity yields a model that predicts bounded stresses and strains at the crack tips for plane-strain problems. However, singularities persist for anti-plane shear (mode-III fracture) under far-field loading, even when Steigmann-Ogden surface elasticity is incorporated. This work is motivated by obtaining a model of brittle fracture capable of predicting bounded stresses and strains for all modes of loading. We formulate an exact general theory of a three-dimensional solid containing a boundary surface with strain-gradient surface elasticity. For planar reference surfaces parameterized by flat coordinates, the form of surface elasticity reduces to that introduced by Hilgers and Pipkin, and when the surface energy is independent of the surface covariant derivative of the stretching, the theory reduces to that of Steigmann and Ogden. We discuss material symmetry using Murdoch and Cohen’s extension of Noll’s theory. We present a model small-strain surface energy that incorporates resistance to geodesic distortion, satisfies strong ellipticity, and requires the same material constants found in the Steigmann-Ogden theory. Finally, we derive and apply the linearized theory to mode-III fracture in an infinite plate under far-field loading. We prove that there always exists a unique classical solution to the governing integro-differential equation, and in contrast to using Steigmann-Ogden surface elasticity, our model is consistent with the linearization assumption in predicting finite stresses and strains at the crack tips.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"156 3","pages":"769 - 797"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10073-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent works have shown that in contrast to classical linear elastic fracture mechanics, endowing crack fronts in a brittle Green-elastic solid with Steigmann-Ogden surface elasticity yields a model that predicts bounded stresses and strains at the crack tips for plane-strain problems. However, singularities persist for anti-plane shear (mode-III fracture) under far-field loading, even when Steigmann-Ogden surface elasticity is incorporated. This work is motivated by obtaining a model of brittle fracture capable of predicting bounded stresses and strains for all modes of loading. We formulate an exact general theory of a three-dimensional solid containing a boundary surface with strain-gradient surface elasticity. For planar reference surfaces parameterized by flat coordinates, the form of surface elasticity reduces to that introduced by Hilgers and Pipkin, and when the surface energy is independent of the surface covariant derivative of the stretching, the theory reduces to that of Steigmann and Ogden. We discuss material symmetry using Murdoch and Cohen’s extension of Noll’s theory. We present a model small-strain surface energy that incorporates resistance to geodesic distortion, satisfies strong ellipticity, and requires the same material constants found in the Steigmann-Ogden theory. Finally, we derive and apply the linearized theory to mode-III fracture in an infinite plate under far-field loading. We prove that there always exists a unique classical solution to the governing integro-differential equation, and in contrast to using Steigmann-Ogden surface elasticity, our model is consistent with the linearization assumption in predicting finite stresses and strains at the crack tips.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.