{"title":"Stability of granular media impacts morphological characteristics under different impact conditions","authors":"Yifeng Wang, Ran Li, Zhipeng Chi, Hui Yang","doi":"10.1515/astro-2024-0002","DOIUrl":null,"url":null,"abstract":"In planetary surfaces, oblique impact events are commonplace, and their study holds significant importance for understanding planetary impact processes and aiding in the design of landers and impactors. Current research predominantly focuses on simplified models to study the force and motion under vertical impact craters in terms of scale and impact loading. For oblique impacts, investigations have primarily concentrated on the final crater shape. However, the specific influence of impact load motion on particle bed movement and the precise impact angle’s effect on the ultimate crater shape during the impact process remain unclear. In this study, we used a custom-built oblique impact experimental setup to analyze changes in the velocity field of the particle bed and the horizontal movement of the impact load. Using quasi-static region to assess ellipticity, we aimed to reveal the state of particle movement during oblique impacts and explore the impact of impact angles and energies on crater formation. The results indicate that under large impact angles, the obliquely acquired kinetic energy is minimal, leading to a predominant static point source movement of the particle bed. At higher energy levels, the impact load primarily excavates downward, resulting in the formation of circular impact craters. These findings underscore the sensitivity of particle bed motion to impact angles, making it a crucial metric for assessing the impact of oblique angles on final crater morphology.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2024-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In planetary surfaces, oblique impact events are commonplace, and their study holds significant importance for understanding planetary impact processes and aiding in the design of landers and impactors. Current research predominantly focuses on simplified models to study the force and motion under vertical impact craters in terms of scale and impact loading. For oblique impacts, investigations have primarily concentrated on the final crater shape. However, the specific influence of impact load motion on particle bed movement and the precise impact angle’s effect on the ultimate crater shape during the impact process remain unclear. In this study, we used a custom-built oblique impact experimental setup to analyze changes in the velocity field of the particle bed and the horizontal movement of the impact load. Using quasi-static region to assess ellipticity, we aimed to reveal the state of particle movement during oblique impacts and explore the impact of impact angles and energies on crater formation. The results indicate that under large impact angles, the obliquely acquired kinetic energy is minimal, leading to a predominant static point source movement of the particle bed. At higher energy levels, the impact load primarily excavates downward, resulting in the formation of circular impact craters. These findings underscore the sensitivity of particle bed motion to impact angles, making it a crucial metric for assessing the impact of oblique angles on final crater morphology.