Regularity of the Semigroup of Regular Probability Measures on Locally Compact Hausdorff Topological Groups

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
M. N. N. Namboodiri
{"title":"Regularity of the Semigroup of Regular Probability Measures on Locally Compact Hausdorff Topological Groups","authors":"M. N. N. Namboodiri","doi":"10.1007/s10959-024-01353-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a locally compact Hausdorff group, and let <i>P</i>(<i>G</i>) denote the class of all regular probability measures on <i>G</i>. It is well known that <i>P</i>(<i>G</i>) forms a semigroup under the convolution of measures. In this paper, we prove that <i>P</i>(<i>G</i>) is not algebraically regular in the sense that not every element has a generalized inverse. Additionally, we attempt to identify algebraically regular elements in some exceptional cases. Several supporting examples are provided to justify these assumptions.\n</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"23 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01353-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a locally compact Hausdorff group, and let P(G) denote the class of all regular probability measures on G. It is well known that P(G) forms a semigroup under the convolution of measures. In this paper, we prove that P(G) is not algebraically regular in the sense that not every element has a generalized inverse. Additionally, we attempt to identify algebraically regular elements in some exceptional cases. Several supporting examples are provided to justify these assumptions.

局部紧密豪斯多夫拓扑群上规则概率量半群的规则性
让 G 是局部紧凑的 Hausdorff 群,让 P(G) 表示 G 上所有正则概率度量的类。众所周知,P(G) 在度量的卷积下构成一个半群。在本文中,我们将证明 P(G) 在代数意义上并不正则,即并非每个元素都有广义逆。此外,我们还试图在一些特殊情况下找出代数正则元素。本文提供了几个支持性例子来证明这些假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信