{"title":"Regularity of the Semigroup of Regular Probability Measures on Locally Compact Hausdorff Topological Groups","authors":"M. N. N. Namboodiri","doi":"10.1007/s10959-024-01353-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a locally compact Hausdorff group, and let <i>P</i>(<i>G</i>) denote the class of all regular probability measures on <i>G</i>. It is well known that <i>P</i>(<i>G</i>) forms a semigroup under the convolution of measures. In this paper, we prove that <i>P</i>(<i>G</i>) is not algebraically regular in the sense that not every element has a generalized inverse. Additionally, we attempt to identify algebraically regular elements in some exceptional cases. Several supporting examples are provided to justify these assumptions.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01353-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a locally compact Hausdorff group, and let P(G) denote the class of all regular probability measures on G. It is well known that P(G) forms a semigroup under the convolution of measures. In this paper, we prove that P(G) is not algebraically regular in the sense that not every element has a generalized inverse. Additionally, we attempt to identify algebraically regular elements in some exceptional cases. Several supporting examples are provided to justify these assumptions.