{"title":"Stable Local-Smooth Principal Component Pursuit","authors":"Jiangjun Peng, Hailin Wang, Xiangyong Cao, Xixi Jia, Hongying Zhang, Deyu Meng","doi":"10.1137/23m1580164","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1182-1205, June 2024. <br/> Abstract.Recently, the CTV-RPCA model proposed the first recoverable theory for separating low-rank and local-smooth matrices and sparse matrices based on the correlated total variation (CTV) regularizer. However, the CTV-RPCA model ignores the influence of noise, which makes the model unable to effectively extract low-rank and local-smooth principal components under noisy circumstances. To alleviate this issue, this article extends the CTV-RPCA model by considering the influence of noise and proposes two robust models with parameter adaptive adjustment, i.e., Stable Principal Component Pursuit based on CTV (CTV-SPCP) and Square Root Principal Component Pursuit based on CTV (CTV-[math]). Furthermore, we present a statistical recoverable error bound for the proposed models, which allows us to know the relationship between the solution of the proposed models and the ground-truth. It is worth mentioning that, in the absence of noise, our theory degenerates back to the exact recoverable theory of the CTV-RPCA model. Finally, we develop the effective algorithms with the strict convergence guarantees. Extensive experiments adequately validate the theoretical assertions and also demonstrate the superiority of the proposed models over many state-of-the-art methods on various typical applications, including video foreground extraction, multispectral image denoising, and hyperspectral image denoising. The source code is released at https://github.com/andrew-pengjj/CTV-SPCP.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"72 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1580164","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1182-1205, June 2024. Abstract.Recently, the CTV-RPCA model proposed the first recoverable theory for separating low-rank and local-smooth matrices and sparse matrices based on the correlated total variation (CTV) regularizer. However, the CTV-RPCA model ignores the influence of noise, which makes the model unable to effectively extract low-rank and local-smooth principal components under noisy circumstances. To alleviate this issue, this article extends the CTV-RPCA model by considering the influence of noise and proposes two robust models with parameter adaptive adjustment, i.e., Stable Principal Component Pursuit based on CTV (CTV-SPCP) and Square Root Principal Component Pursuit based on CTV (CTV-[math]). Furthermore, we present a statistical recoverable error bound for the proposed models, which allows us to know the relationship between the solution of the proposed models and the ground-truth. It is worth mentioning that, in the absence of noise, our theory degenerates back to the exact recoverable theory of the CTV-RPCA model. Finally, we develop the effective algorithms with the strict convergence guarantees. Extensive experiments adequately validate the theoretical assertions and also demonstrate the superiority of the proposed models over many state-of-the-art methods on various typical applications, including video foreground extraction, multispectral image denoising, and hyperspectral image denoising. The source code is released at https://github.com/andrew-pengjj/CTV-SPCP.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.