Investigating the price determinants of the European Emission Trading System: a non-parametric approach

Cristiano Salvagnin, Aldo Glielmo, Maria Elena De Giuli, Antonietta Mira
{"title":"Investigating the price determinants of the European Emission Trading System: a non-parametric approach","authors":"Cristiano Salvagnin, Aldo Glielmo, Maria Elena De Giuli, Antonietta Mira","doi":"arxiv-2406.05094","DOIUrl":null,"url":null,"abstract":"The European carbon market plays a pivotal role in the European Union's\nambitious target of achieving carbon neutrality by 2050. Understanding the\nintricacies of factors influencing European Union Emission Trading System (EU\nETS) market prices is paramount for effective policy making and strategy\nimplementation. We propose the use of the Information Imbalance, a recently\nintroduced non-parametric measure quantifying the degree to which a set of\nvariables is informative with respect to another one, to study the\nrelationships among macroeconomic, economic, uncertainty, and energy variables\nconcerning EU ETS prices. Our analysis shows that in Phase 3 commodity related\nvariables such as the ERIX index are the most informative to explain the\nbehaviour of the EU ETS market price. Transitioning to Phase 4, financial\nfluctuations take centre stage, with the uncertainty in the EUR/CHF exchange\nrate emerging as a crucial determinant. These results reflect the disruptive\nimpacts of the COVID-19 pandemic and the energy crisis in reshaping the\nimportance of the different variables. Beyond variable analysis, we also\npropose to leverage the Information Imbalance to address the problem of\nmixed-frequency forecasting, and we identify the weekly time scale as the most\ninformative for predicting the EU ETS price. Finally, we show how the\nInformation Imbalance can be effectively combined with Gaussian Process\nregression for efficient nowcasting and forecasting using very small sets of\nhighly informative predictors.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The European carbon market plays a pivotal role in the European Union's ambitious target of achieving carbon neutrality by 2050. Understanding the intricacies of factors influencing European Union Emission Trading System (EU ETS) market prices is paramount for effective policy making and strategy implementation. We propose the use of the Information Imbalance, a recently introduced non-parametric measure quantifying the degree to which a set of variables is informative with respect to another one, to study the relationships among macroeconomic, economic, uncertainty, and energy variables concerning EU ETS prices. Our analysis shows that in Phase 3 commodity related variables such as the ERIX index are the most informative to explain the behaviour of the EU ETS market price. Transitioning to Phase 4, financial fluctuations take centre stage, with the uncertainty in the EUR/CHF exchange rate emerging as a crucial determinant. These results reflect the disruptive impacts of the COVID-19 pandemic and the energy crisis in reshaping the importance of the different variables. Beyond variable analysis, we also propose to leverage the Information Imbalance to address the problem of mixed-frequency forecasting, and we identify the weekly time scale as the most informative for predicting the EU ETS price. Finally, we show how the Information Imbalance can be effectively combined with Gaussian Process regression for efficient nowcasting and forecasting using very small sets of highly informative predictors.
调查欧洲排放交易体系的价格决定因素:一种非参数方法
欧洲碳市场在欧盟到 2050 年实现碳中和的宏伟目标中发挥着举足轻重的作用。了解影响欧盟排放交易体系(EUETS)市场价格的各种因素的复杂性,对于有效的政策制定和战略实施至关重要。我们建议使用 "信息不平衡 "来研究与欧盟排放交易体系价格相关的宏观经济、经济、不确定性和能源变量之间的关系。"信息不平衡 "是最近推出的一种非参数测量方法,用于量化一组变量相对于另一组变量的信息程度。我们的分析表明,在第 3 阶段,与商品相关的变量(如 ERIX 指数)对解释欧盟排放交易计划市场价格的行为最有参考价值。进入第 4 阶段后,金融波动占据了中心位置,欧元/瑞士法郎汇率的不确定性成为关键的决定因素。这些结果反映了 COVID-19 大流行和能源危机在重塑不同变量重要性方面的破坏性影响。除了变量分析,我们还提出利用信息不平衡来解决混合频率预测问题,并确定周时间尺度是预测欧盟排放交易计划价格最有信息价值的时间尺度。最后,我们展示了如何将信息失衡与高斯过程回归有效结合,从而利用极少量的高信息量预测因子进行高效的现在预测和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信