The Discrete Nonlinear Schrödinger Equation with Linear Gain and Nonlinear Loss: The Infinite Lattice with Nonzero Boundary Conditions and Its Finite-Dimensional Approximations

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
G. Fotopoulos, N. I. Karachalios, V. Koukouloyannis, P. Kyriazopoulos, K. Vetas
{"title":"The Discrete Nonlinear Schrödinger Equation with Linear Gain and Nonlinear Loss: The Infinite Lattice with Nonzero Boundary Conditions and Its Finite-Dimensional Approximations","authors":"G. Fotopoulos, N. I. Karachalios, V. Koukouloyannis, P. Kyriazopoulos, K. Vetas","doi":"10.1007/s00332-024-10050-6","DOIUrl":null,"url":null,"abstract":"<p>The study of nonlinear Schrödinger-type equations with nonzero boundary conditions introduces challenging problems both for the continuous (partial differential equation) and the discrete (lattice) counterparts. They are associated with fascinating dynamics emerging by the ubiquitous phenomenon of modulation instability. In this work, we consider the discrete nonlinear Schrödinger equation with linear gain and nonlinear loss. For the infinite lattice supplemented with nonzero boundary conditions, which describe solutions decaying on the top of a finite background, we provide a rigorous proof that for the corresponding initial boundary value problem, solutions exist for any initial condition, if and only if, the amplitude of the background has a precise value <span>\\(A_*\\)</span> defined by the gain-loss parameters. We argue that this essential property of this infinite lattice cannot be captured by finite lattice approximations of the problem. Commonly, such approximations are provided by lattices with periodic boundary conditions or as it is shown herein, by a modified problem closed with Dirichlet boundary conditions. For the finite-dimensional dynamical system defined by the periodic lattice, the dynamics for all initial conditions are captured by a global attractor. Analytical arguments corroborated by numerical simulations show that the global attractor is trivial, defined by a plane wave of amplitude <span>\\(A_*\\)</span>. Thus, any instability effects or localized phenomena simulated by the finite system can be only transient prior the convergence to this trivial attractor. Aiming to simulate the dynamics of the infinite lattice as accurately as possible, we study the dynamics of localized initial conditions on the constant background and investigate the potential impact of the global asymptotic stability of the background with amplitude <span>\\(A_*\\)</span> in the long-time evolution of the system.\n</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"9 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10050-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The study of nonlinear Schrödinger-type equations with nonzero boundary conditions introduces challenging problems both for the continuous (partial differential equation) and the discrete (lattice) counterparts. They are associated with fascinating dynamics emerging by the ubiquitous phenomenon of modulation instability. In this work, we consider the discrete nonlinear Schrödinger equation with linear gain and nonlinear loss. For the infinite lattice supplemented with nonzero boundary conditions, which describe solutions decaying on the top of a finite background, we provide a rigorous proof that for the corresponding initial boundary value problem, solutions exist for any initial condition, if and only if, the amplitude of the background has a precise value \(A_*\) defined by the gain-loss parameters. We argue that this essential property of this infinite lattice cannot be captured by finite lattice approximations of the problem. Commonly, such approximations are provided by lattices with periodic boundary conditions or as it is shown herein, by a modified problem closed with Dirichlet boundary conditions. For the finite-dimensional dynamical system defined by the periodic lattice, the dynamics for all initial conditions are captured by a global attractor. Analytical arguments corroborated by numerical simulations show that the global attractor is trivial, defined by a plane wave of amplitude \(A_*\). Thus, any instability effects or localized phenomena simulated by the finite system can be only transient prior the convergence to this trivial attractor. Aiming to simulate the dynamics of the infinite lattice as accurately as possible, we study the dynamics of localized initial conditions on the constant background and investigate the potential impact of the global asymptotic stability of the background with amplitude \(A_*\) in the long-time evolution of the system.

Abstract Image

具有线性增益和非线性损耗的离散非线性薛定谔方程:具有非零边界条件的无限晶格及其有限维近似值
对具有非零边界条件的非线性薛定谔方程的研究,为连续(偏微分方程)和离散(晶格)对应方程带来了具有挑战性的问题。它们与无处不在的调制不稳定性现象所产生的迷人动力学相关联。在这项研究中,我们考虑了具有线性增益和非线性损耗的离散非线性薛定谔方程。对于补充了非零边界条件的无限晶格,它描述了在有限背景顶部衰减的解,我们提供了一个严格的证明,即对于相应的初始边界值问题,当且仅当背景振幅具有由增益-损耗参数定义的精确值 \(A_*\)时,对于任何初始条件都存在解。我们认为,问题的有限晶格近似无法捕捉到这种无限晶格的本质属性。通常,这种近似是由具有周期性边界条件的晶格提供的,或者如本文所示,由具有迪里希特边界条件的修正封闭问题提供的。对于由周期性网格定义的有限维动力系统,所有初始条件下的动力学都被一个全局吸引子所捕获。数值模拟证实的分析论证表明,全局吸引子是微不足道的,由振幅为 \(A_*\) 的平面波定义。因此,有限系统模拟的任何不稳定效应或局部现象都只能是收敛到这个琐碎吸引子之前的短暂现象。为了尽可能精确地模拟无限晶格的动力学,我们研究了恒定背景上局部初始条件的动力学,并研究了振幅为 \(A_*\)的背景的全局渐近稳定性对系统长期演化的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信