{"title":"The Hanging Chain Problem in the Sphere and in the Hyperbolic Plane","authors":"Rafael López","doi":"10.1007/s00332-024-10056-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the notion of the catenary curve in the sphere and in the hyperbolic plane is introduced. In both spaces, a catenary is defined as the shape of a hanging chain when its potential energy is determined by the distance to a given geodesic of the space. Several characterizations of the catenary are established in terms of the curvature of the curve and of the angle that its unit normal makes with a vector field of the ambient space. Furthermore, in the hyperbolic plane, we extend the concept of catenary substituting the reference geodesic by a horocycle or the hyperbolic distance by the horocycle distance.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"145 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10056-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the notion of the catenary curve in the sphere and in the hyperbolic plane is introduced. In both spaces, a catenary is defined as the shape of a hanging chain when its potential energy is determined by the distance to a given geodesic of the space. Several characterizations of the catenary are established in terms of the curvature of the curve and of the angle that its unit normal makes with a vector field of the ambient space. Furthermore, in the hyperbolic plane, we extend the concept of catenary substituting the reference geodesic by a horocycle or the hyperbolic distance by the horocycle distance.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.