I. Ashurov, Kh. Akhunov, Kh. Ashurov, H. Wang, G. Wang, P. Ji, M. Kurbanov
{"title":"Utilization of Silicon for Lithium-Ion Battery Anodes: Unveiling Progress, Hurdles, and Prospects (Review)","authors":"I. Ashurov, Kh. Akhunov, Kh. Ashurov, H. Wang, G. Wang, P. Ji, M. Kurbanov","doi":"10.3103/S0003701X23601801","DOIUrl":null,"url":null,"abstract":"<p>Within the lithium-ion battery sector, silicon (Si)-based anode materials have emerged as a critical driver of progress, notably in advancing energy storage capabilities. The heightened interest in Si-based anode materials can be attributed to their advantageous characteristics, which include a high theoretical specific capacity, a low delithiation potential, wide availability, and cost-effectiveness. However, these materials are not immune to challenges. One prominent issue arises from the significant volume changes that occur during lithiation (charging) and delithiation (discharging) processes, resulting in mechanical stress within the material. This stress leads to structural degradation over time, thereby reducing capacity and performance. Another critical concern revolves around the inherent low electronic conductivity of Si-based materials and their limited cycling stability, which limits their practical application on a commercial scale. This comprehensive review thoroughly examines recent advancements in SiO<sub><i>x</i></sub> (0 < <i>x</i> ≤ 2)-based anode materials, with a specific focus on SiO<sub>2</sub> and Si-carbon composites, delving into their electrochemical properties and mechanisms. It also highlights existing challenges and suggests potential avenues for improvement, providing valuable insights for future research directions. The synthesis methods and performance benchmarks discussed in this review are essential for developing more efficient and sustainable SiO<sub><i>x</i></sub>-based anodes across various energy storage applications.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":null,"pages":null},"PeriodicalIF":1.2040,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23601801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Within the lithium-ion battery sector, silicon (Si)-based anode materials have emerged as a critical driver of progress, notably in advancing energy storage capabilities. The heightened interest in Si-based anode materials can be attributed to their advantageous characteristics, which include a high theoretical specific capacity, a low delithiation potential, wide availability, and cost-effectiveness. However, these materials are not immune to challenges. One prominent issue arises from the significant volume changes that occur during lithiation (charging) and delithiation (discharging) processes, resulting in mechanical stress within the material. This stress leads to structural degradation over time, thereby reducing capacity and performance. Another critical concern revolves around the inherent low electronic conductivity of Si-based materials and their limited cycling stability, which limits their practical application on a commercial scale. This comprehensive review thoroughly examines recent advancements in SiOx (0 < x ≤ 2)-based anode materials, with a specific focus on SiO2 and Si-carbon composites, delving into their electrochemical properties and mechanisms. It also highlights existing challenges and suggests potential avenues for improvement, providing valuable insights for future research directions. The synthesis methods and performance benchmarks discussed in this review are essential for developing more efficient and sustainable SiOx-based anodes across various energy storage applications.
期刊介绍:
Applied Solar Energy is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.