On determinants of matrices related to Pascal’s triangle

Pub Date : 2024-06-18 DOI:10.1007/s10998-024-00581-6
Martín Mereb
{"title":"On determinants of matrices related to Pascal’s triangle","authors":"Martín Mereb","doi":"10.1007/s10998-024-00581-6","DOIUrl":null,"url":null,"abstract":"<p>We prove that the symmetric Pascal triangle matrix modulo 2 has the property that each of the square sub-matrices positioned at the upper border or on the left border has determinant, computed in <span>\\({\\mathbb {Z}}\\)</span>, equal to 1 or <span>\\(-1\\)</span>. Furthermore, we give the exact number of Pascal-like <span>\\(n \\times m\\)</span> matrices over a commutative ring with finite group of units.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00581-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the symmetric Pascal triangle matrix modulo 2 has the property that each of the square sub-matrices positioned at the upper border or on the left border has determinant, computed in \({\mathbb {Z}}\), equal to 1 or \(-1\). Furthermore, we give the exact number of Pascal-like \(n \times m\) matrices over a commutative ring with finite group of units.

Abstract Image

分享
查看原文
论与帕斯卡三角形有关的矩阵行列式
我们证明了对称帕斯卡三角形矩阵 modulo 2 具有这样的性质,即位于上边界或左边界的每个正方形子矩阵的行列式,在 \({\mathbb {Z}}\) 中计算,都等于 1 或 \(-1\)。此外,我们还给出了在具有有限单元组的交换环上帕斯卡样(n 次 m\ )矩阵的确切数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信