On a ternary diophantine inequality with prime numbers of a special type II

IF 0.6 3区 数学 Q3 MATHEMATICS
Li Zhu
{"title":"On a ternary diophantine inequality with prime numbers of a special type II","authors":"Li Zhu","doi":"10.1007/s10998-024-00602-4","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <i>N</i> is a sufficiently large real number and <i>E</i> is an arbitrarily large constant. In this paper, it is proved that, for <span>\\(1&lt; c &lt; \\frac{7}{6}\\)</span>, the Diophantine inequality </p><span>$$\\begin{aligned} |p_1^c+p_2^c+p_3^c-N|&lt;(\\log N)^{-E} \\end{aligned}$$</span><p>is solvable in prime variables <span>\\(p_1,p_2,p_3\\)</span> so that each of the numbers <span>\\(p_i+2,\\,i=1,2,3\\)</span>, has at most <span>\\(\\big [3.43655+{\\frac{12.12}{7-6c}}\\big ]\\)</span> prime factors counted with multiplicity.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"72 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00602-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that N is a sufficiently large real number and E is an arbitrarily large constant. In this paper, it is proved that, for \(1< c < \frac{7}{6}\), the Diophantine inequality

$$\begin{aligned} |p_1^c+p_2^c+p_3^c-N|<(\log N)^{-E} \end{aligned}$$

is solvable in prime variables \(p_1,p_2,p_3\) so that each of the numbers \(p_i+2,\,i=1,2,3\), has at most \(\big [3.43655+{\frac{12.12}{7-6c}}\big ]\) prime factors counted with multiplicity.

关于有特殊类型素数 II 的三元二叉不等式
假设 N 是一个足够大的实数,E 是一个任意大的常数。本文证明,对于 \(1< c < \frac{7}{6}\), Diophantine 不等式 $$\begin{aligned}.|p_1^c+p_2^c+p_3^c-N|<(\log N)^{-E}\end{aligned}$$在素数变量 \(p_1,p_2,p_3\)中是可解的,因此每个数 \(p_i+2,\,i=1,2,3\),最多有\(\big [3.43655+{frac{12.12}{7-6c}}\big ]\)以倍数计算的素因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信