EmRad: Ubiquitous Vital Sign Sensing Using Compact Continuous-Wave Radars

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Nils C. Albrecht;Dominik Langer;Daniel Krauss;Robert Richer;Luca Abel;Bjoern M. Eskofier;Nicolas Rohleder;Alexander Koelpin
{"title":"EmRad: Ubiquitous Vital Sign Sensing Using Compact Continuous-Wave Radars","authors":"Nils C. Albrecht;Dominik Langer;Daniel Krauss;Robert Richer;Luca Abel;Bjoern M. Eskofier;Nicolas Rohleder;Alexander Koelpin","doi":"10.1109/OJEMB.2024.3420241","DOIUrl":null,"url":null,"abstract":"In biomedical monitoring, non-intrusive and continuous tracking of vital signs is a crucial yet challenging objective. Although accurate, traditional methods, such as electrocardiography (ECG) and photoplethysmography (PPG), necessitate direct contact with the patient, posing limitations for long-term and unobtrusive monitoring. To address this challenge, we introduce the EmRad system, an innovative solution harnessing the capabilities of continuous-wave (CW) radar technology for the contactless detection of vital signs, including heart rate and respiratory rate. EmRad discerns itself by emphasizing miniaturization, performance, scalability, and its ability to generate large-scale datasets in various environments. This article explains the system's design, focusing on signal processing strategies and motion artifact reduction to ensure precise vital sign extraction. The EmRad system's versatility is showcased through various case studies, highlighting its potential to transform vital sign monitoring in research and clinical contexts.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"725-734"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10577086","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10577086/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In biomedical monitoring, non-intrusive and continuous tracking of vital signs is a crucial yet challenging objective. Although accurate, traditional methods, such as electrocardiography (ECG) and photoplethysmography (PPG), necessitate direct contact with the patient, posing limitations for long-term and unobtrusive monitoring. To address this challenge, we introduce the EmRad system, an innovative solution harnessing the capabilities of continuous-wave (CW) radar technology for the contactless detection of vital signs, including heart rate and respiratory rate. EmRad discerns itself by emphasizing miniaturization, performance, scalability, and its ability to generate large-scale datasets in various environments. This article explains the system's design, focusing on signal processing strategies and motion artifact reduction to ensure precise vital sign extraction. The EmRad system's versatility is showcased through various case studies, highlighting its potential to transform vital sign monitoring in research and clinical contexts.
EmRad:使用紧凑型连续波雷达进行无所不在的生命体征传感
在生物医学监测中,对生命体征进行非侵入性和连续跟踪是一个至关重要但又极具挑战性的目标。心电图(ECG)和光电血压计(PPG)等传统方法虽然准确,但必须与病人直接接触,对长期和非侵入式监测造成了限制。为了应对这一挑战,我们推出了 EmRad 系统,这是一种利用连续波 (CW) 雷达技术的创新解决方案,用于非接触式检测包括心率和呼吸频率在内的生命体征。EmRad 通过强调微型化、性能、可扩展性及其在各种环境下生成大规模数据集的能力而独树一帜。本文介绍了该系统的设计,重点是信号处理策略和运动伪影的减少,以确保生命体征的精确提取。通过各种案例研究展示了 EmRad 系统的多功能性,突出了其在研究和临床环境中改变生命体征监测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信