{"title":"A Review of the Effect of Magnetic Field Using Nanofluids and Ultrasonic Amplification Technology on Water Desalination by Solar Stills","authors":"K. Samadi, H. R. Goshayeshi, I. Chaer","doi":"10.3103/S0003701X23600820","DOIUrl":null,"url":null,"abstract":"<p>Limited access to potable water sources is turned to one of the basic human concerns today. Therefore, solar desalination units as a cost-efficient solution have attracted more attention in recent years. Solar stills are devices of great interest to researchers because of the low cost of construction, having no complex mechanisms, and less need for service and maintenance. Much study has been recently done in relation to modeling, economization, and optimization of these devices, most of which were carried out in Asian countries with hot and dry climates. Regarding that solar desalination systems often enjoy low efficiency; the present work has reviewed researches conducted by others to evaluate the effect of magnetic impact using <span>\\({\\text{F}}{{{\\text{e}}}_{3}}{{{\\text{O}}}_{4}}\\)</span> Ferrofluid and also ultrasonic waves as known approaches to enhance the performance and water output of such devices. The method and findings of the previous scientific studies are discussed comprehensively in this review.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":"60 1","pages":"20 - 48"},"PeriodicalIF":1.2040,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23600820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Limited access to potable water sources is turned to one of the basic human concerns today. Therefore, solar desalination units as a cost-efficient solution have attracted more attention in recent years. Solar stills are devices of great interest to researchers because of the low cost of construction, having no complex mechanisms, and less need for service and maintenance. Much study has been recently done in relation to modeling, economization, and optimization of these devices, most of which were carried out in Asian countries with hot and dry climates. Regarding that solar desalination systems often enjoy low efficiency; the present work has reviewed researches conducted by others to evaluate the effect of magnetic impact using \({\text{F}}{{{\text{e}}}_{3}}{{{\text{O}}}_{4}}\) Ferrofluid and also ultrasonic waves as known approaches to enhance the performance and water output of such devices. The method and findings of the previous scientific studies are discussed comprehensively in this review.
期刊介绍:
Applied Solar Energy is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.