Reproducibility of radiomic features of the brain on ultrahigh-resolution MRI at 7 Tesla: a comparison of different segmentation techniques

Julian Klinger, Doris Leithner, Sungmin Woo, Michael Weber, Hebert Alberto Vargas, Marius E. Mayerhoefer
{"title":"Reproducibility of radiomic features of the brain on ultrahigh-resolution MRI at 7 Tesla: a comparison of different segmentation techniques","authors":"Julian Klinger, Doris Leithner, Sungmin Woo, Michael Weber, Hebert Alberto Vargas, Marius E. Mayerhoefer","doi":"10.1101/2024.06.24.24308597","DOIUrl":null,"url":null,"abstract":"Objectives: To determine the impact of segmentation techniques on radiomic features extracted from ultrahigh-field (UHF) MRI of the brain. Materials and Methods: Twenty-one 7T MRI scans of the brain, including a 3D magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) T1-weighted sequence with an isotropic 0.63 mm3 voxel size, were analyzed. Radiomic features (histogram, texture, and shape; total n=101) from six brain regions -cerebral gray and white matter, basal ganglia, ventricles, cerebellum, and brainstem- were extracted from segmentation masks constructed with four different techniques: the iGT (reference standard), based on a custom pipeline that combined automatic segmentation tools and expert reader correction; the deep-learning algorithm Cerebrum-7T; the Freesurfer-v7 software suite; and the Nighres algorithm. Principal components (PCs) were calculated for histogram and texture features. To test the reproducibility of radiomic features, intraclass correlation coefficients (ICC) were used to compare Cerebrum-7, Freesurfer-v7, and Nighres to the iGT, respectively. Results: For histogram PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.99, 0.42, and 0.11 for the gray matter; 0.84, 0.25, and 0.43 for the basal ganglia; 0.89, 0.063, and 0.036 for the white matter; 0.84, 0.21, and 0.33 for the ventricles; 0.94, 0.64, and 0.93 for the cerebellum; and 0.78, 0.21, and 0.53 for the brainstem. For texture PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.95, 0.21, and 0.15 for the gray matter; 0.70, 0.36, and 0.023 for the basal ganglia; 0.91, 0.25, and 0.023 for the white matter; 0.80, 0.75, and 0.59 for the ventricles; 0.95, 0.43, and 0.86 for the cerebellum; and 0.72, 0.39, and 0.46 for the brainstem. For shape features, median ICCs for Cerebrum-7T, FreeSurfer-v7, and Nighres were 0.99, 0.91, and 0.36 for the gray matter; 0.89, 0.90, and 0.13 for the basal ganglia; 0.98, 0.91, and 0.027 for the white matter; 0.91, 0.91, and 0.36 for the ventricles; 0.80, 0.68, and 0.47 for the cerebellum; and 0.79, 0.17, and 0.15 for the brainstem. Conclusions: Radiomic features in UHF MRI of the brain show substantial variability depending on the segmentation algorithm. The deep learning algorithm Cerebrum-7T enabled the highest reproducibility. Dedicated software tools for UHF MRI may be needed to achieve more stable results.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"145 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.06.24.24308597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To determine the impact of segmentation techniques on radiomic features extracted from ultrahigh-field (UHF) MRI of the brain. Materials and Methods: Twenty-one 7T MRI scans of the brain, including a 3D magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) T1-weighted sequence with an isotropic 0.63 mm3 voxel size, were analyzed. Radiomic features (histogram, texture, and shape; total n=101) from six brain regions -cerebral gray and white matter, basal ganglia, ventricles, cerebellum, and brainstem- were extracted from segmentation masks constructed with four different techniques: the iGT (reference standard), based on a custom pipeline that combined automatic segmentation tools and expert reader correction; the deep-learning algorithm Cerebrum-7T; the Freesurfer-v7 software suite; and the Nighres algorithm. Principal components (PCs) were calculated for histogram and texture features. To test the reproducibility of radiomic features, intraclass correlation coefficients (ICC) were used to compare Cerebrum-7, Freesurfer-v7, and Nighres to the iGT, respectively. Results: For histogram PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.99, 0.42, and 0.11 for the gray matter; 0.84, 0.25, and 0.43 for the basal ganglia; 0.89, 0.063, and 0.036 for the white matter; 0.84, 0.21, and 0.33 for the ventricles; 0.94, 0.64, and 0.93 for the cerebellum; and 0.78, 0.21, and 0.53 for the brainstem. For texture PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.95, 0.21, and 0.15 for the gray matter; 0.70, 0.36, and 0.023 for the basal ganglia; 0.91, 0.25, and 0.023 for the white matter; 0.80, 0.75, and 0.59 for the ventricles; 0.95, 0.43, and 0.86 for the cerebellum; and 0.72, 0.39, and 0.46 for the brainstem. For shape features, median ICCs for Cerebrum-7T, FreeSurfer-v7, and Nighres were 0.99, 0.91, and 0.36 for the gray matter; 0.89, 0.90, and 0.13 for the basal ganglia; 0.98, 0.91, and 0.027 for the white matter; 0.91, 0.91, and 0.36 for the ventricles; 0.80, 0.68, and 0.47 for the cerebellum; and 0.79, 0.17, and 0.15 for the brainstem. Conclusions: Radiomic features in UHF MRI of the brain show substantial variability depending on the segmentation algorithm. The deep learning algorithm Cerebrum-7T enabled the highest reproducibility. Dedicated software tools for UHF MRI may be needed to achieve more stable results.
7 特斯拉超高分辨率磁共振成像脑放射学特征的再现性:不同分割技术的比较
目的确定分割技术对从大脑超高场(UHF)磁共振成像中提取的放射学特征的影响。材料与方法:对 21 个 7T 脑部 MRI 扫描进行分析,包括三维磁化预处理双快速采集梯度回波(MP2RAGE)T1 加权序列,各向同性 0.63 mm3 体素大小。从四种不同技术构建的分割掩膜中提取了六个脑区(大脑灰质和白质、基底节、脑室、小脑和脑干)的放射学特征(直方图、纹理和形状;总人数=101):iGT(参考标准),基于结合自动分割工具和专家校正的定制管道;深度学习算法 Cerebrum-7T;Freesurfer-v7 软件套件;以及 Nighres 算法。计算了直方图和纹理特征的主成分(PC)。为了测试放射学特征的可重复性,使用类内相关系数(ICC)将 Cerebrum-7、Freesurfer-v7 和 Nighres 分别与 iGT 进行比较。结果显示对于直方图 PC,Cerebrum-7T、Freesurfer-v7 和 Nighres 的中位 ICC 分别为:灰质 0.99、0.42 和 0.11;基底节 0.84、0.25 和 0.43;基底节 0.白质分别为 0.89、0.063 和 0.036;脑室分别为 0.84、0.21 和 0.33;小脑分别为 0.94、0.64 和 0.93;脑干分别为 0.78、0.21 和 0.53。对于纹理 PC,Cerebrum-7T、Freesurfer-v7 和 Nighres 的中位 ICCs 分别为:灰质 0.95、0.21 和 0.15;基底节 0.70、0.36 和 0.023;脑室 0.91、0.25 和 0.93;小脑 0.94、0.64 和 0.93;脑干 0.78、0.21 和 0.53。91、0.25 和 0.023;脑室为 0.80、0.75 和 0.59;小脑为 0.95、0.43 和 0.86;脑干为 0.72、0.39 和 0.46。在形状特征方面,Cerebrum-7T、FreeSurfer-v7 和 Nighres 的中位 ICC 分别为:灰质 0.99、0.91 和 0.36;基底节 0.89、0.90 和 0.13;脑干 0.98、0.91 和 0.46;脑室 0.95、0.43 和 0.86;小脑 0.72、0.39 和 0.46。98、0.91 和 0.027;脑室为 0.91、0.91 和 0.36;小脑为 0.80、0.68 和 0.47;脑干为 0.79、0.17 和 0.15。结论大脑超高频磁共振成像的放射学特征因分割算法的不同而存在很大差异。深度学习算法 Cerebrum-7T 的可重复性最高。要获得更稳定的结果,可能需要专门的超高频磁共振成像软件工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信