Efficient approximations of transcriptional bursting effects on the dynamics of a gene regulatory network

Jochen Kursawe, Antoine Moneyron, Tobias Galla
{"title":"Efficient approximations of transcriptional bursting effects on the dynamics of a gene regulatory network","authors":"Jochen Kursawe, Antoine Moneyron, Tobias Galla","doi":"arxiv-2406.19109","DOIUrl":null,"url":null,"abstract":"Mathematical models of gene regulatory networks are widely used to study cell\nfate changes and transcriptional regulation. When designing such models, it is\nimportant to accurately account for sources of stochasticity. However, doing so\ncan be computationally expensive and analytically untractable, posing limits on\nthe extent of our explorations and on parameter inference. Here, we explore\nthis challenge using the example of a simple auto-negative feedback motif, in\nwhich we incorporate stochastic variation due to transcriptional bursting and\nnoise from finite copy numbers. We find that transcriptional bursting may\nchange the qualitative dynamics of the system by inducing oscillations when\nthey would not otherwise be present, or by magnifying existing oscillations. We\ndescribe multiple levels of approximation for the model in the form of\ndifferential equations, piecewise deterministic processes, and stochastic\ndifferential equations. Importantly, we derive how the classical chemical\nLangevin equation can be extended to include a noise term representing\ntranscriptional bursting. This approximation drastically decreases computation\ntimes and allows us to analytically calculate properties of the dynamics, such\nas their power spectrum. We explore when these approximations break down and\nprovide recommendations for their use. Our analysis illustrates the importance\nof accounting for transcriptional bursting when simulating gene regulatory\nnetwork dynamics and provides recommendations to do so with computationally\nefficient methods.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical models of gene regulatory networks are widely used to study cell fate changes and transcriptional regulation. When designing such models, it is important to accurately account for sources of stochasticity. However, doing so can be computationally expensive and analytically untractable, posing limits on the extent of our explorations and on parameter inference. Here, we explore this challenge using the example of a simple auto-negative feedback motif, in which we incorporate stochastic variation due to transcriptional bursting and noise from finite copy numbers. We find that transcriptional bursting may change the qualitative dynamics of the system by inducing oscillations when they would not otherwise be present, or by magnifying existing oscillations. We describe multiple levels of approximation for the model in the form of differential equations, piecewise deterministic processes, and stochastic differential equations. Importantly, we derive how the classical chemical Langevin equation can be extended to include a noise term representing transcriptional bursting. This approximation drastically decreases computation times and allows us to analytically calculate properties of the dynamics, such as their power spectrum. We explore when these approximations break down and provide recommendations for their use. Our analysis illustrates the importance of accounting for transcriptional bursting when simulating gene regulatory network dynamics and provides recommendations to do so with computationally efficient methods.
转录猝发效应对基因调控网络动态的高效近似值
基因调控网络的数学模型被广泛用于研究细胞命运变化和转录调控。在设计此类模型时,准确考虑随机性的来源非常重要。然而,这样做的计算成本很高,而且在分析上也难以实现,这就限制了我们的探索范围和参数推断。在这里,我们以一个简单的自动负反馈图案为例,探讨了这一难题,并在其中加入了转录猝发和有限拷贝数噪声引起的随机变化。我们发现,转录猝发可能会改变系统的定性动态,诱发原本不会出现的振荡,或者放大已有的振荡。我们以微分方程、片断确定性过程和随机微分方程的形式描述了模型的多级近似。重要的是,我们推导了如何将经典的化学朗热文方程扩展到包含代表转录猝发的噪声项。这种近似方法大大减少了计算时间,并允许我们分析计算动力学特性,如功率谱。我们探讨了这些近似何时会崩溃,并提出了使用这些近似的建议。我们的分析说明了在模拟基因调控网络动力学时考虑转录猝发的重要性,并提供了使用高效计算方法进行模拟的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信