The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Dan Wang
{"title":"The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations","authors":"Dan Wang","doi":"10.1134/S0040577924060035","DOIUrl":null,"url":null,"abstract":"<p> We analyze the asymptotic behavior of the Hankel determinant generated by a semiclassical Laguerre weight. For this, we use ladder operators and track the evolution of parameters to establish that an auxiliary quantity associated with the semiclassical Laguerre weight satisfies the Painlevé IV equation, subject to suitable transformations of variables. Using the Coulomb fluid method, we derive the large-<span>\\(n\\)</span> expansion of the logarithmic form of the Hankel determinant. This allows us to gain insights into the scaling and fluctuations of the determinant, providing a deeper understanding of its behavior in the semiclassical Laguerre ensemble. Moreover, we delve into the asymptotic evaluation of monic orthogonal polynomials with respect to the semiclassical Laguerre weight, focusing on a special case. In doing so, we shed light on the properties and characteristics of these polynomials in the context of the ensemble. Furthermore, we explore the relation between the second-order differential equations satisfied by the monic orthogonal polynomials with respect to the semiclassical Laguerre weight and the tri-confluent Heun equations or the bi-confluent Heun equations. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924060035","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the asymptotic behavior of the Hankel determinant generated by a semiclassical Laguerre weight. For this, we use ladder operators and track the evolution of parameters to establish that an auxiliary quantity associated with the semiclassical Laguerre weight satisfies the Painlevé IV equation, subject to suitable transformations of variables. Using the Coulomb fluid method, we derive the large-\(n\) expansion of the logarithmic form of the Hankel determinant. This allows us to gain insights into the scaling and fluctuations of the determinant, providing a deeper understanding of its behavior in the semiclassical Laguerre ensemble. Moreover, we delve into the asymptotic evaluation of monic orthogonal polynomials with respect to the semiclassical Laguerre weight, focusing on a special case. In doing so, we shed light on the properties and characteristics of these polynomials in the context of the ensemble. Furthermore, we explore the relation between the second-order differential equations satisfied by the monic orthogonal polynomials with respect to the semiclassical Laguerre weight and the tri-confluent Heun equations or the bi-confluent Heun equations.

半经典拉盖尔单元集合的汉克尔行列式、Painlevé IV 和 Heun 方程
摘要 我们分析了由半经典拉盖尔权重生成的汉克尔行列式的渐近行为。为此,我们使用梯形算子并跟踪参数的演化,以确定与半经典拉盖尔权重相关的辅助量在适当的变量变换下满足潘列韦 IV 方程。利用库仑流体方法,我们推导出汉克尔行列式对数形式的大(n)展开。这使我们能够深入了解行列式的缩放和波动,从而更深入地理解它在半经典拉盖尔集合中的行为。此外,我们还深入研究了单次正交多项式相对于半经典拉盖尔权重的渐近评估,并将重点放在一个特例上。在此过程中,我们揭示了这些多项式在集合背景下的性质和特征。此外,我们还探讨了关于半经典拉盖尔权重的单正交多项式所满足的二阶微分方程与三汇合海恩方程或双汇合海恩方程之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信