Coercive second-kind boundary integral equations for the Laplace Dirichlet problem on Lipschitz domains

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
S. N. Chandler-Wilde, E. A. Spence
{"title":"Coercive second-kind boundary integral equations for the Laplace Dirichlet problem on Lipschitz domains","authors":"S. N. Chandler-Wilde, E. A. Spence","doi":"10.1007/s00211-024-01424-9","DOIUrl":null,"url":null,"abstract":"<p>We present new second-kind integral-equation formulations of the interior and exterior Dirichlet problems for Laplace’s equation. The operators in these formulations are both continuous and coercive on general Lipschitz domains in <span>\\(\\mathbb {R}^d\\)</span>, <span>\\(d\\ge 2\\)</span>, in the space <span>\\(L^2(\\Gamma )\\)</span>, where <span>\\(\\Gamma \\)</span> denotes the boundary of the domain. These properties of continuity and coercivity immediately imply that (1) the Galerkin method converges when applied to these formulations; and (2) the Galerkin matrices are well-conditioned as the discretisation is refined, without the need for operator preconditioning (and we prove a corresponding result about the convergence of GMRES). The main significance of these results is that it was recently proved (see Chandler-Wilde and Spence in Numer Math 150(2):299–371, 2022) that there exist 2- and 3-d Lipschitz domains and 3-d star-shaped Lipschitz polyhedra for which the operators in the standard second-kind integral-equation formulations for Laplace’s equation (involving the double-layer potential and its adjoint) <i>cannot</i> be written as the sum of a coercive operator and a compact operator in the space <span>\\(L^2(\\Gamma )\\)</span>. Therefore there exist 2- and 3-d Lipschitz domains and 3-d star-shaped Lipschitz polyhedra for which Galerkin methods in <span>\\({L^2(\\Gamma )}\\)</span> do <i>not</i> converge when applied to the standard second-kind formulations, but <i>do</i> converge for the new formulations.\n</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01424-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present new second-kind integral-equation formulations of the interior and exterior Dirichlet problems for Laplace’s equation. The operators in these formulations are both continuous and coercive on general Lipschitz domains in \(\mathbb {R}^d\), \(d\ge 2\), in the space \(L^2(\Gamma )\), where \(\Gamma \) denotes the boundary of the domain. These properties of continuity and coercivity immediately imply that (1) the Galerkin method converges when applied to these formulations; and (2) the Galerkin matrices are well-conditioned as the discretisation is refined, without the need for operator preconditioning (and we prove a corresponding result about the convergence of GMRES). The main significance of these results is that it was recently proved (see Chandler-Wilde and Spence in Numer Math 150(2):299–371, 2022) that there exist 2- and 3-d Lipschitz domains and 3-d star-shaped Lipschitz polyhedra for which the operators in the standard second-kind integral-equation formulations for Laplace’s equation (involving the double-layer potential and its adjoint) cannot be written as the sum of a coercive operator and a compact operator in the space \(L^2(\Gamma )\). Therefore there exist 2- and 3-d Lipschitz domains and 3-d star-shaped Lipschitz polyhedra for which Galerkin methods in \({L^2(\Gamma )}\) do not converge when applied to the standard second-kind formulations, but do converge for the new formulations.

Abstract Image

Lipschitz 域上拉普拉斯-狄利克特问题的强制第二类边界积分方程
我们提出了拉普拉斯方程内部和外部迪里夏特问题的新的第二类积分方程公式。这些公式中的算子在 \(\mathbb {R}^d\), \(d\ge 2\), \(L^2(\Gamma )\) 空间中的一般 Lipschitz 域上既是连续的又是矫顽力的,其中 \(\Gamma \) 表示域的边界。连续性和矫顽力的这些特性立即意味着:(1) Galerkin 方法在应用于这些公式时会收敛;(2) 随着离散化的细化,Galerkin 矩阵会得到很好的调节,而不需要算子预调节(我们证明了 GMRES 收敛的相应结果)。这些结果的主要意义在于,最近证明(见 Chandler-Wilde 和 Spence 在 Numer Math 150(2):299-371, 2022),存在2维和3维的Lipschitz域和3维星形Lipschitz多面体,对于这些域和多面体,拉普拉斯方程的标准第二类积分方程公式中的算子(涉及双层势及其邻接)不能写成空间\(L^2(\Gamma )\)中的胁迫算子和紧凑算子之和。因此,存在二维和三维 Lipschitz 域以及三维星形 Lipschitz 多面体,对于这些域和多面体,在 \({L^2(\Gamma )}\) 中的 Galerkin 方法应用于标准第二类公式时不会收敛,但应用于新公式时会收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信