{"title":"Series2vec: similarity-based self-supervised representation learning for time series classification","authors":"Navid Mohammadi Foumani, Chang Wei Tan, Geoffrey I. Webb, Hamid Rezatofighi, Mahsa Salehi","doi":"10.1007/s10618-024-01043-w","DOIUrl":null,"url":null,"abstract":"<p>We argue that time series analysis is fundamentally different in nature to either vision or natural language processing with respect to the forms of meaningful self-supervised learning tasks that can be defined. Motivated by this insight, we introduce a novel approach called <i>Series2Vec</i> for self-supervised representation learning. Unlike the state-of-the-art methods in time series which rely on hand-crafted data augmentation, Series2Vec is trained by predicting the similarity between two series in both temporal and spectral domains through a self-supervised task. By leveraging the similarity prediction task, which has inherent meaning for a wide range of time series analysis tasks, Series2Vec eliminates the need for hand-crafted data augmentation. To further enforce the network to learn similar representations for similar time series, we propose a novel approach that applies order-invariant attention to each representation within the batch during training. Our evaluation of Series2Vec on nine large real-world datasets, along with the UCR/UEA archive, shows enhanced performance compared to current state-of-the-art self-supervised techniques for time series. Additionally, our extensive experiments show that Series2Vec performs comparably with fully supervised training and offers high efficiency in datasets with limited-labeled data. Finally, we show that the fusion of Series2Vec with other representation learning models leads to enhanced performance for time series classification. Code and models are open-source at https://github.com/Navidfoumani/Series2Vec</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"139 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01043-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We argue that time series analysis is fundamentally different in nature to either vision or natural language processing with respect to the forms of meaningful self-supervised learning tasks that can be defined. Motivated by this insight, we introduce a novel approach called Series2Vec for self-supervised representation learning. Unlike the state-of-the-art methods in time series which rely on hand-crafted data augmentation, Series2Vec is trained by predicting the similarity between two series in both temporal and spectral domains through a self-supervised task. By leveraging the similarity prediction task, which has inherent meaning for a wide range of time series analysis tasks, Series2Vec eliminates the need for hand-crafted data augmentation. To further enforce the network to learn similar representations for similar time series, we propose a novel approach that applies order-invariant attention to each representation within the batch during training. Our evaluation of Series2Vec on nine large real-world datasets, along with the UCR/UEA archive, shows enhanced performance compared to current state-of-the-art self-supervised techniques for time series. Additionally, our extensive experiments show that Series2Vec performs comparably with fully supervised training and offers high efficiency in datasets with limited-labeled data. Finally, we show that the fusion of Series2Vec with other representation learning models leads to enhanced performance for time series classification. Code and models are open-source at https://github.com/Navidfoumani/Series2Vec
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.