A Model-Data Asymptotic-Preserving Neural Network Method Based on Micro-Macro Decomposition for Gray Radiative Transfer Equations

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Hongyan Li,Song Jiang,Wenjun Sun,Liwei Xu, Guanyu Zhou
{"title":"A Model-Data Asymptotic-Preserving Neural Network Method Based on Micro-Macro Decomposition for Gray Radiative Transfer Equations","authors":"Hongyan Li,Song Jiang,Wenjun Sun,Liwei Xu, Guanyu Zhou","doi":"10.4208/cicp.oa-2022-0315","DOIUrl":null,"url":null,"abstract":"We propose a model-data asymptotic-preserving neural network(MD-APNN) method to solve the nonlinear gray radiative transfer equations (GRTEs). The\nsystem is challenging to be simulated with both the traditional numerical schemes\nand the vanilla physics-informed neural networks (PINNs) due to the multiscale characteristics. Under the framework of PINNs, we employ a micro-macro decomposition technique to construct a new asymptotic-preserving (AP) loss function, which includes the residual of the governing equations in the micro-macro coupled form, the\ninitial and boundary conditions with additional diffusion limit information, the conservation laws, and a few labeled data. A convergence analysis is performed for the\nproposed method, and a number of numerical examples are presented to illustrate the\nefficiency of MD-APNNs, and particularly, the importance of the AP property in the\nneural networks for the diffusion dominating problems. The numerical results indicate that MD-APNNs lead to a better performance than APNNs or pure Data-driven\nnetworks in the simulation of the nonlinear non-stationary GRTEs.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"5 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2022-0315","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a model-data asymptotic-preserving neural network(MD-APNN) method to solve the nonlinear gray radiative transfer equations (GRTEs). The system is challenging to be simulated with both the traditional numerical schemes and the vanilla physics-informed neural networks (PINNs) due to the multiscale characteristics. Under the framework of PINNs, we employ a micro-macro decomposition technique to construct a new asymptotic-preserving (AP) loss function, which includes the residual of the governing equations in the micro-macro coupled form, the initial and boundary conditions with additional diffusion limit information, the conservation laws, and a few labeled data. A convergence analysis is performed for the proposed method, and a number of numerical examples are presented to illustrate the efficiency of MD-APNNs, and particularly, the importance of the AP property in the neural networks for the diffusion dominating problems. The numerical results indicate that MD-APNNs lead to a better performance than APNNs or pure Data-driven networks in the simulation of the nonlinear non-stationary GRTEs.
基于微宏分解的灰色辐射传输方程的模型-数据渐近保留神经网络方法
我们提出了一种模型-数据渐近保留神经网络(MD-APNN)方法来求解非线性灰色辐射传递方程(GRTEs)。由于该系统的多尺度特性,用传统数值方案和虚构物理信息神经网络(PINNs)模拟该系统都具有挑战性。在 PINNs 框架下,我们采用微宏分解技术构建了一个新的渐近保全(AP)损失函数,其中包括微宏耦合形式的治理方程残差、初始条件和边界条件以及额外的扩散极限信息、守恒定律和一些标记数据。对所提出的方法进行了收敛分析,并给出了一些数值示例,以说明 MD-APNN 的效率,特别是神经网络的 AP 特性对扩散主导问题的重要性。数值结果表明,在模拟非线性非平稳 GRTEs 时,MD-APNNs 比 APNNs 或纯数据驱动网络具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信