Saifullah Saifullah, Stefan Agne, Andreas Dengel, Sheraz Ahmed
{"title":"DocXclassifier: towards a robust and interpretable deep neural network for document image classification","authors":"Saifullah Saifullah, Stefan Agne, Andreas Dengel, Sheraz Ahmed","doi":"10.1007/s10032-024-00483-w","DOIUrl":null,"url":null,"abstract":"<p>Model interpretability and robustness are becoming increasingly critical today for the safe and practical deployment of deep learning (DL) models in industrial settings. As DL-backed automated document processing systems become increasingly common in business workflows, there is a pressing need today to enhance interpretability and robustness for the task of document image classification, an integral component of such systems. Surprisingly, while much research has been devoted to improving the performance of deep models for this task, little attention has been given to their interpretability and robustness. In this paper, we aim to improve upon both aspects and introduce two inherently interpretable deep document classifiers, DocXClassifier and DocXClassifierFPN, both of which not only achieve significant performance improvements over existing approaches but also hold the capability to simultaneously generate feature importance maps while making their predictions. Our approach involves integrating a convolutional neural network (ConvNet) backbone with an attention mechanism to perform weighted aggregation of features based on their importance to the class, enabling the generation of interpretable importance maps. Additionally, we propose integrating Feature Pyramid Networks with the attention mechanism to significantly enhance the resolution of the interpretability maps, especially for pyramidal ConvNet architectures. Our approach attains state-of-the-art performance in image-based classification on two popular document datasets, RVL-CDIP and Tobacco3482, with top-1 classification accuracies of 94.19% and 95.71%, respectively. Additionally, it sets a new record for the highest image-based classification accuracy on Tobacco3482 without transfer learning from RVL-CDIP, at 90.29%. In addition, our proposed training strategy demonstrates superior robustness compared to existing approaches, significantly outperforming them on 19 out of 21 different types of novel data distortions, while achieving comparable results on the remaining two. By combining robustness with interpretability, DocXClassifier presents a promising step toward the practical deployment of DL models for document classification tasks.</p>","PeriodicalId":50277,"journal":{"name":"International Journal on Document Analysis and Recognition","volume":"140 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Document Analysis and Recognition","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10032-024-00483-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Model interpretability and robustness are becoming increasingly critical today for the safe and practical deployment of deep learning (DL) models in industrial settings. As DL-backed automated document processing systems become increasingly common in business workflows, there is a pressing need today to enhance interpretability and robustness for the task of document image classification, an integral component of such systems. Surprisingly, while much research has been devoted to improving the performance of deep models for this task, little attention has been given to their interpretability and robustness. In this paper, we aim to improve upon both aspects and introduce two inherently interpretable deep document classifiers, DocXClassifier and DocXClassifierFPN, both of which not only achieve significant performance improvements over existing approaches but also hold the capability to simultaneously generate feature importance maps while making their predictions. Our approach involves integrating a convolutional neural network (ConvNet) backbone with an attention mechanism to perform weighted aggregation of features based on their importance to the class, enabling the generation of interpretable importance maps. Additionally, we propose integrating Feature Pyramid Networks with the attention mechanism to significantly enhance the resolution of the interpretability maps, especially for pyramidal ConvNet architectures. Our approach attains state-of-the-art performance in image-based classification on two popular document datasets, RVL-CDIP and Tobacco3482, with top-1 classification accuracies of 94.19% and 95.71%, respectively. Additionally, it sets a new record for the highest image-based classification accuracy on Tobacco3482 without transfer learning from RVL-CDIP, at 90.29%. In addition, our proposed training strategy demonstrates superior robustness compared to existing approaches, significantly outperforming them on 19 out of 21 different types of novel data distortions, while achieving comparable results on the remaining two. By combining robustness with interpretability, DocXClassifier presents a promising step toward the practical deployment of DL models for document classification tasks.
期刊介绍:
The large number of existing documents and the production of a multitude of new ones every year raise important issues in efficient handling, retrieval and storage of these documents and the information which they contain. This has led to the emergence of new research domains dealing with the recognition by computers of the constituent elements of documents - including characters, symbols, text, lines, graphics, images, handwriting, signatures, etc. In addition, these new domains deal with automatic analyses of the overall physical and logical structures of documents, with the ultimate objective of a high-level understanding of their semantic content. We have also seen renewed interest in optical character recognition (OCR) and handwriting recognition during the last decade. Document analysis and recognition are obviously the next stage.
Automatic, intelligent processing of documents is at the intersections of many fields of research, especially of computer vision, image analysis, pattern recognition and artificial intelligence, as well as studies on reading, handwriting and linguistics. Although quality document related publications continue to appear in journals dedicated to these domains, the community will benefit from having this journal as a focal point for archival literature dedicated to document analysis and recognition.