Stabilizing an adverse density difference in the presence of phase change

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Lewis Johns, Ranga Narayanan
{"title":"Stabilizing an adverse density difference in the presence of phase change","authors":"Lewis Johns, Ranga Narayanan","doi":"10.1007/s10665-024-10372-0","DOIUrl":null,"url":null,"abstract":"<p>Given two phases in equilibrium in a porous solid, the heavy phase lying above the light phase in a gravitational field, we stabilize this adverse density arrangement by heating from below and derive a formula for how steep the temperature gradient must be to do this. The input temperature gradient has two effects on the stability of our system. Its effect on the heat convection is destabilizing, its effect on the heat conduction at the surface is stabilizing. By directing our attention to the case of zero growth rate, we obtain the critical value of the input temperature gradient as it depends on the permeability of the porous solid, the density difference across the surface, the distance between the planes bounding our system, and the physical properties. Our problem makes connections to the Bénard problem where it has two, one, or no critical points, and to the Rayleigh–Taylor problem where it has no critical points.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10372-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given two phases in equilibrium in a porous solid, the heavy phase lying above the light phase in a gravitational field, we stabilize this adverse density arrangement by heating from below and derive a formula for how steep the temperature gradient must be to do this. The input temperature gradient has two effects on the stability of our system. Its effect on the heat convection is destabilizing, its effect on the heat conduction at the surface is stabilizing. By directing our attention to the case of zero growth rate, we obtain the critical value of the input temperature gradient as it depends on the permeability of the porous solid, the density difference across the surface, the distance between the planes bounding our system, and the physical properties. Our problem makes connections to the Bénard problem where it has two, one, or no critical points, and to the Rayleigh–Taylor problem where it has no critical points.

Abstract Image

在出现相变时稳定不利的密度差
给定多孔固体中处于平衡状态的两相,在重力场中重相位于轻相之上,我们通过从下往上加热来稳定这种不利的密度排列,并推导出温度梯度必须有多大才能达到这一目的的公式。输入的温度梯度对我们系统的稳定性有两种影响。它对热对流的影响是破坏稳定,而对表面热传导的影响是稳定。通过关注零增长率的情况,我们得到了输入温度梯度的临界值,因为它取决于多孔固体的渗透性、整个表面的密度差、约束我们系统的平面之间的距离以及物理特性。我们的问题与贝纳德问题(有两个、一个或没有临界点)和瑞利-泰勒问题(没有临界点)都有联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信