Rana Alabdan, Jamal Alsamri, Siwar Ben Haj Hassine, Faiz Abdullah Alotaibi, Saud S. Alotaibi, Ayman Yafoz, Mrim M. Alnfiai, Mesfer Al Duhayyim
{"title":"Unmasking GAN-Generated Faces with Optimal Deep Learning and Cognitive Computing-Based Cutting-Edge Detection System","authors":"Rana Alabdan, Jamal Alsamri, Siwar Ben Haj Hassine, Faiz Abdullah Alotaibi, Saud S. Alotaibi, Ayman Yafoz, Mrim M. Alnfiai, Mesfer Al Duhayyim","doi":"10.1007/s12559-024-10318-9","DOIUrl":null,"url":null,"abstract":"<p>The emergence of deep learning (DL) has improved the excellence of generated media. However, with the enlarged level of photorealism, synthetic media is becoming very similar to tangible media, increasing severe problems regarding transmitting fake or deployed data over the Internet. In this situation, it is significant to improve automatic tools to constantly and early identify synthetic media. Generative Adversarial Network (GAN)-based models can create realistic faces that cause deep social and security issues. Existing techniques for identifying GAN-generated faces can execute well on restricted public datasets. Nevertheless, images from existing datasets must signify real situations sufficient for view variants and data distributions, where real faces mainly outnumber artificial ones. Therefore, this study develops an optimal DL-based GAN-generated face detection and classification (ODL-GANFDC) technique. The ODL-GANFDC technique aims to examine the input images properly and recognize whether GAN generates them. To accomplish this, the ODL-GANFDC technique follows the initial stage of the CLAHE-based contrast enhancement process. In addition, the deep residual network (DRN) model must be employed to learn the complex and intrinsic patterns from the preprocessed images. Besides, the hyperparameters of the DRN model can be optimally chosen using an improved sand cat swarm optimization (ISCSO) algorithm. Finally, the GAN-generated faces can be detected using a variational autoencoder (VAE). An extensive set of experimentations can be carried out to highlight the performance of the ODL-GANFDC technique. The experimental outcomes stated the promising results of the ODL-GANFDC technique over compared approaches on the GAN-generated face detection process.\n</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10318-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of deep learning (DL) has improved the excellence of generated media. However, with the enlarged level of photorealism, synthetic media is becoming very similar to tangible media, increasing severe problems regarding transmitting fake or deployed data over the Internet. In this situation, it is significant to improve automatic tools to constantly and early identify synthetic media. Generative Adversarial Network (GAN)-based models can create realistic faces that cause deep social and security issues. Existing techniques for identifying GAN-generated faces can execute well on restricted public datasets. Nevertheless, images from existing datasets must signify real situations sufficient for view variants and data distributions, where real faces mainly outnumber artificial ones. Therefore, this study develops an optimal DL-based GAN-generated face detection and classification (ODL-GANFDC) technique. The ODL-GANFDC technique aims to examine the input images properly and recognize whether GAN generates them. To accomplish this, the ODL-GANFDC technique follows the initial stage of the CLAHE-based contrast enhancement process. In addition, the deep residual network (DRN) model must be employed to learn the complex and intrinsic patterns from the preprocessed images. Besides, the hyperparameters of the DRN model can be optimally chosen using an improved sand cat swarm optimization (ISCSO) algorithm. Finally, the GAN-generated faces can be detected using a variational autoencoder (VAE). An extensive set of experimentations can be carried out to highlight the performance of the ODL-GANFDC technique. The experimental outcomes stated the promising results of the ODL-GANFDC technique over compared approaches on the GAN-generated face detection process.
深度学习(DL)的出现提高了生成媒体的质量。然而,随着逼真度的提高,合成媒体正变得与有形媒体非常相似,从而增加了在互联网上传输伪造或部署数据的严重问题。在这种情况下,改进自动工具以不断及早识别合成媒体就显得尤为重要。基于生成对抗网络(GAN)的模型可以创建逼真的人脸,从而引发深刻的社会和安全问题。识别 GAN 生成的人脸的现有技术可以在受限的公共数据集上很好地执行。然而,现有数据集中的图像必须足以代表视图变体和数据分布的真实情况,在这种情况下,真实人脸主要多于人造人脸。因此,本研究开发了一种基于 DL 的 GAN 生成的最佳人脸检测和分类(ODL-GANFDC)技术。ODL-GANFDC 技术旨在正确检查输入图像并识别 GAN 是否生成了这些图像。为此,ODL-GANFDC 技术遵循基于 CLAHE 的对比度增强过程的初始阶段。此外,还必须使用深度残差网络(DRN)模型来学习预处理图像中复杂的内在模式。此外,DRN 模型的超参数可通过改进的沙猫群优化(ISCSO)算法进行优化选择。最后,可以使用变异自动编码器(VAE)检测 GAN 生成的人脸。为了突出 ODL-GANFDC 技术的性能,我们进行了大量实验。实验结果表明,在 GAN 生成的人脸检测过程中,ODL-GANFDC 技术与其他方法相比具有良好的效果。
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.