Shor’s algorithm does not factor large integers in the presence of noise

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jin-Yi Cai
{"title":"Shor’s algorithm does not factor large integers in the presence of noise","authors":"Jin-Yi Cai","doi":"10.1007/s11432-023-3961-3","DOIUrl":null,"url":null,"abstract":"<p>We consider Shor’s quantum factoring algorithm in the setting of noisy quantum gates. Under a generic model of random noise for (controlled) rotation gates, we prove that the algorithm does not factor integers of the form <i>pq</i> when the noise exceeds a vanishingly small level in terms of <i>n</i>—the number of bits of the integer to be factored, where <i>p</i> and <i>q</i> are from a well-defined set of primes of positive density. We further prove that with probability 1 − <i>o</i>(1) over random prime pairs (<i>p, q</i>), Shor’s factoring algorithm does not factor numbers of the form <i>pq</i>, with the same level of random noise present.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-3961-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Shor’s quantum factoring algorithm in the setting of noisy quantum gates. Under a generic model of random noise for (controlled) rotation gates, we prove that the algorithm does not factor integers of the form pq when the noise exceeds a vanishingly small level in terms of n—the number of bits of the integer to be factored, where p and q are from a well-defined set of primes of positive density. We further prove that with probability 1 − o(1) over random prime pairs (p, q), Shor’s factoring algorithm does not factor numbers of the form pq, with the same level of random noise present.

肖尔算法在有噪声的情况下不能对大整数进行因式分解
我们考虑了肖尔在有噪声量子门环境下的量子因式分解算法。在(受控)旋转门的随机噪声通用模型下,我们证明了当噪声超过 n(待因式分解整数的比特数)的极小值时,该算法不会对 pq 形式的整数进行因式分解,其中 p 和 q 来自定义明确的正密度素数集。我们进一步证明,在随机素数对(p, q)上,肖尔的因式分解算法以 1 - o(1) 的概率,不会因式分解 pq 形式的数,且随机噪音水平相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信