Inverse scattering transform for the defocusing-defocusing coupled Hirota equations with non-zero boundary conditions: double-pole solutions

Peng-Fei Han, Wen-Xiu Ma, Ru-Suo Ye, Yi Zhang
{"title":"Inverse scattering transform for the defocusing-defocusing coupled Hirota equations with non-zero boundary conditions: double-pole solutions","authors":"Peng-Fei Han, Wen-Xiu Ma, Ru-Suo Ye, Yi Zhang","doi":"arxiv-2406.08189","DOIUrl":null,"url":null,"abstract":"The inverse scattering transform for the defocusing-defocusing coupled Hirota\nequations with non-zero boundary conditions at infinity is thoroughly\ndiscussed. We delve into the analytical properties of the Jost eigenfunctions\nand scrutinize the characteristics of the scattering coefficients. To enhance\nour investigation of the fundamental eigenfunctions, we have derived additional\nauxiliary eigenfunctions with the help of the adjoint problem. Two symmetry\nconditions are studied to constrain the behavior of the eigenfunctions and\nscattering coefficients. Utilizing these symmetries, we precisely delineate the\ndiscrete spectrum and establish the associated symmetries of the scattering\ndata. By framing the inverse problem within the context of the Riemann-Hilbert\nproblem, we develop suitable jump conditions to express the eigenfunctions.\nConsequently, we deduce the pure soliton solutions from the\ndefocusing-defocusing coupled Hirota equations, and the double-poles solutions\nare provided explicitly for the first time in this work.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The inverse scattering transform for the defocusing-defocusing coupled Hirota equations with non-zero boundary conditions at infinity is thoroughly discussed. We delve into the analytical properties of the Jost eigenfunctions and scrutinize the characteristics of the scattering coefficients. To enhance our investigation of the fundamental eigenfunctions, we have derived additional auxiliary eigenfunctions with the help of the adjoint problem. Two symmetry conditions are studied to constrain the behavior of the eigenfunctions and scattering coefficients. Utilizing these symmetries, we precisely delineate the discrete spectrum and establish the associated symmetries of the scattering data. By framing the inverse problem within the context of the Riemann-Hilbert problem, we develop suitable jump conditions to express the eigenfunctions. Consequently, we deduce the pure soliton solutions from the defocusing-defocusing coupled Hirota equations, and the double-poles solutions are provided explicitly for the first time in this work.
具有非零边界条件的散焦-聚焦耦合广田方程的反散射变换:双极解
我们深入讨论了在无穷远处具有非零边界条件的散焦-聚焦耦合广方程的反散射变换。我们深入探讨了约斯特特征函数的分析性质,并仔细研究了散射系数的特征。为了加强对基本特征函数的研究,我们借助邻接问题推导出了额外的辅助特征函数。我们研究了两个对称条件,以约束特征函数和散射系数的行为。利用这些对称性,我们精确地划分了离散谱,并建立了散射数据的相关对称性。通过将逆问题置于黎曼-希尔伯特问题(Riemann-Hilbertproblem)的背景下,我们建立了合适的跃迁条件来表达特征函数。因此,我们从聚焦-去聚焦耦合广达方程中推导出了纯孤子解,并在这项工作中首次明确提供了双极解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信