The Pluricomplex Green Function of the Monge–Ampère Equation for $$(n-1)$$ -Plurisubharmonic Functions and Form Type k-Hessian Equations

Shuimu Li
{"title":"The Pluricomplex Green Function of the Monge–Ampère Equation for $$(n-1)$$ -Plurisubharmonic Functions and Form Type k-Hessian Equations","authors":"Shuimu Li","doi":"10.1007/s12220-024-01702-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce the pluricomplex Green function of the Monge–Ampère equation for <span>\\((n-1)\\)</span>-plurisubharmonic functions by solving the Dirichlet problem for the form type Monge–Ampère and Hessian equations on a punctured domain. We prove the pluricomplex Green function is <span>\\(C^{1,\\alpha }\\)</span> by constructing approximating solutions and establishing uniform a priori estimates for the gradient and the complex Hessian. The singular solutions turn out to be smooth for the <i>k</i>-Hessian equations for <span>\\((n-1)\\)</span>-<i>k</i>-admissible functions.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01702-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the pluricomplex Green function of the Monge–Ampère equation for \((n-1)\)-plurisubharmonic functions by solving the Dirichlet problem for the form type Monge–Ampère and Hessian equations on a punctured domain. We prove the pluricomplex Green function is \(C^{1,\alpha }\) by constructing approximating solutions and establishing uniform a priori estimates for the gradient and the complex Hessian. The singular solutions turn out to be smooth for the k-Hessian equations for \((n-1)\)-k-admissible functions.

$$(n-1)$$-普吕次谐函数的蒙日-安培方程的多复绿函数和形式类型 k-黑森方程
在本文中,我们通过求解穿刺域上形式类型 Monge-Ampère 和 Hessian 方程的 Dirichlet 问题,引入了 \((n-1)\)plurisubharmonic 函数的 Monge-Ampère 方程的复复 Green 函数。我们通过构造近似解以及建立梯度和复 Hessian 的统一先验估计来证明复绿函数是 \(C^{1,\alpha }\) 的。对于 \((n-1)\)-k-admissible 函数的 k-Hessian 方程来说,奇异解是平滑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信