{"title":"Uniform Upper Bounds on Courant Sharp Neumann Eigenvalues of Chain Domains","authors":"Thomas Beck, Yaiza Canzani, Jeremy L. Marzuola","doi":"10.1007/s12220-024-01710-w","DOIUrl":null,"url":null,"abstract":"<p>We obtain upper bounds on the number of nodal domains of Laplace eigenfunctions on chain domains with Neumann boundary conditions. The chain domains consist of a family of planar domains, with piecewise smooth boundary, that are joined by thin necks. Our work does not assume a lower bound on the width of the necks in the chain domain. As a consequence, we prove an upper bound on the eigenvalue of Courant sharp eigenfunctions that is independent of the widths of the necks.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01710-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain upper bounds on the number of nodal domains of Laplace eigenfunctions on chain domains with Neumann boundary conditions. The chain domains consist of a family of planar domains, with piecewise smooth boundary, that are joined by thin necks. Our work does not assume a lower bound on the width of the necks in the chain domain. As a consequence, we prove an upper bound on the eigenvalue of Courant sharp eigenfunctions that is independent of the widths of the necks.