Geometric Description of Some Loewner Chains with Infinitely Many Slits

Eleftherios K. Theodosiadis, Konstantinos Zarvalis
{"title":"Geometric Description of Some Loewner Chains with Infinitely Many Slits","authors":"Eleftherios K. Theodosiadis, Konstantinos Zarvalis","doi":"10.1007/s12220-024-01718-2","DOIUrl":null,"url":null,"abstract":"<p>We study the chordal Loewner equation associated with certain driving functions that produce infinitely many slits. Specifically, for a choice of a sequence of positive numbers <span>\\((b_n)_{n\\ge 1}\\)</span> and points of the real line <span>\\((k_n)_{n\\ge 1}\\)</span>, we explicitily solve the Loewner PDE </p><span>$$\\begin{aligned} \\dfrac{\\partial f}{\\partial t}(z,t)=-f'(z,t)\\sum _{n=1}^{+\\infty }\\dfrac{2b_n}{z-k_n\\sqrt{1-t}} \\end{aligned}$$</span><p>in <span>\\(\\mathbb {H}\\times [0,1)\\)</span>. Using techniques involving the harmonic measure, we analyze the geometric behaviour of its solutions, as <span>\\(t\\rightarrow 1^-\\)</span>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01718-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the chordal Loewner equation associated with certain driving functions that produce infinitely many slits. Specifically, for a choice of a sequence of positive numbers \((b_n)_{n\ge 1}\) and points of the real line \((k_n)_{n\ge 1}\), we explicitily solve the Loewner PDE

$$\begin{aligned} \dfrac{\partial f}{\partial t}(z,t)=-f'(z,t)\sum _{n=1}^{+\infty }\dfrac{2b_n}{z-k_n\sqrt{1-t}} \end{aligned}$$

in \(\mathbb {H}\times [0,1)\). Using techniques involving the harmonic measure, we analyze the geometric behaviour of its solutions, as \(t\rightarrow 1^-\).

Abstract Image

具有无限多裂缝的一些 Loewner 链的几何描述
我们研究了与某些产生无限多狭缝的驱动函数相关的弦洛夫纳方程。具体来说,对于一个正数序列((b_n)_{n\ge 1})和实线点((k_n)_{n\ge 1})的选择,我们显式地求解了 Loewner PDE $$(开始{aligned})。\dfrac{partial f}{partial t}(z,t)=-f'(z,t)\sum _{n=1}^{+\infty }\dfrac{2b_n}{z-k_n\sqrt{1-t}}\end{aligned}$$in \(\mathbb {H}\times [0,1)\).利用涉及谐波测量的技术,我们分析了其解的几何行为,如 (t\rightarrow 1^-\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信