{"title":"Research on effects of braiding process on the composite preform quality using finite element method","authors":"Zufeng Shang, Xingtao Hu, Qinchuan Li, Wei Wang","doi":"10.1177/07316844241263202","DOIUrl":null,"url":null,"abstract":"The quality of a braided preform significantly impacts composite performance and its manufacturing control is paramount. However, predicting the braiding process, especially for irregular composite shapes, poses challenges. To tackle the problem, this paper proposes a numerical modeling method based on the software Abaqus. It is firstly utilized to declare the dynamic stabilization mechanism of the braiding progress on a circular and straight mandrel, validating the deposit plane position and braiding angle against theoretical results. The stable deposit plane position is then used to guide the initial placement of the mandrels with irregular geometries, such as complex, varying profile and curved centerline. Based on the method, uniform braiding configurations are obtained numerically, with their patterns discussed via comparisons with results from mismatched mandrel placements. Fiber distribution rules on different irregular geometric features have also been investigated. The method proposed can guide the mandrel control and improve the braiding quality of irregular composite preforms during manufacturing.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"25 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241263202","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The quality of a braided preform significantly impacts composite performance and its manufacturing control is paramount. However, predicting the braiding process, especially for irregular composite shapes, poses challenges. To tackle the problem, this paper proposes a numerical modeling method based on the software Abaqus. It is firstly utilized to declare the dynamic stabilization mechanism of the braiding progress on a circular and straight mandrel, validating the deposit plane position and braiding angle against theoretical results. The stable deposit plane position is then used to guide the initial placement of the mandrels with irregular geometries, such as complex, varying profile and curved centerline. Based on the method, uniform braiding configurations are obtained numerically, with their patterns discussed via comparisons with results from mismatched mandrel placements. Fiber distribution rules on different irregular geometric features have also been investigated. The method proposed can guide the mandrel control and improve the braiding quality of irregular composite preforms during manufacturing.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).