{"title":"Approximation Methods for a Class of Non-Lipschitz Mathematical Programs with Equilibrium Constraints","authors":"Lei Guo, Gaoxi Li","doi":"10.1007/s10957-024-02475-6","DOIUrl":null,"url":null,"abstract":"<p>We consider how to solve a class of non-Lipschitz mathematical programs with equilibrium constraints (MPEC) where the objective function involves a non-Lipschitz sparsity-inducing function and other functions are smooth. Solving the non-Lipschitz MPEC is highly challenging since the standard constraint qualifications fail due to the existence of equilibrium constraints and the subdifferential of the objective function is unbounded due to the existence of the non-Lipschitz function. On the one hand, for tackling the non-Lipschitzness of the objective function, we introduce a novel class of locally Lipschitz approximation functions that consolidate and unify a diverse range of existing smoothing techniques for the non-Lipschitz function. On the other hand, we use the Kanzow and Schwartz regularization scheme to approximate the equilibrium constraints since this regularization can preserve certain perpendicular structure as in equilibrium constraints, which can induce better convergence results. Then an approximation method is proposed for solving the non-Lipschitz MPEC and its convergence is established under weak conditions. In contrast with existing results, the proposed method can converge to a better stationary point under weaker qualification conditions. Finally, a computational study on the sparse solutions of linear complementarity problems is presented. The numerical results demonstrate the effectiveness of the proposed method.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"50 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02475-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider how to solve a class of non-Lipschitz mathematical programs with equilibrium constraints (MPEC) where the objective function involves a non-Lipschitz sparsity-inducing function and other functions are smooth. Solving the non-Lipschitz MPEC is highly challenging since the standard constraint qualifications fail due to the existence of equilibrium constraints and the subdifferential of the objective function is unbounded due to the existence of the non-Lipschitz function. On the one hand, for tackling the non-Lipschitzness of the objective function, we introduce a novel class of locally Lipschitz approximation functions that consolidate and unify a diverse range of existing smoothing techniques for the non-Lipschitz function. On the other hand, we use the Kanzow and Schwartz regularization scheme to approximate the equilibrium constraints since this regularization can preserve certain perpendicular structure as in equilibrium constraints, which can induce better convergence results. Then an approximation method is proposed for solving the non-Lipschitz MPEC and its convergence is established under weak conditions. In contrast with existing results, the proposed method can converge to a better stationary point under weaker qualification conditions. Finally, a computational study on the sparse solutions of linear complementarity problems is presented. The numerical results demonstrate the effectiveness of the proposed method.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.