First-principles NMR of oxide glasses boosted by machine learning

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Thibault Charpentier
{"title":"First-principles NMR of oxide glasses boosted by machine learning","authors":"Thibault Charpentier","doi":"10.1039/d4fd00129j","DOIUrl":null,"url":null,"abstract":"Solid-State NMR has established itself as a cutting-egde spectroscopy for elucidating the structure of oxide glasses thanks to several decades of methodological and instrumental progresses. First-principles calculations of NMR properties combined with molecular dynamics (MD) simulations provides a powerful complementing approach for the interpretation of the NMR data although they still suffer from limitations in terms of size, time and high consumption of computational resources. We address this challenge by developing a machine-learning framework to boost predictive modelling of NMR spectra. We use kernel ridge regression techniques (least-square support vector regression and linear ridge regression) combined with the smooth overlap of atomic position (SOAP) atom-centered descriptors to efficiently predict NMR interactions: isotropic magnetic shielding and the electric field gradient (EFG) tensor. As illustrated in this work, this approach enables the simulation of MAS and MQMAS NMR spectra of very large models (more than 10000 atoms) and an efficient averaging of NMR properties over MD trajectories of nanoseconds for incorporating finite temperature effects, at computational cost of classical MD simulation. We illustrate these advances on sodium silicate glasses (SiO2-Na2O). NMR parameters (isotropic chemical shift and electric field gradient) could be predicted with an accuracy of 1 to 2% in terms of the total span of the NMR parameter values. To include vibrational effects, an approach is proposed by scaling the EFG tensor in NMR simulations with a factor obtained from the time auto-correlation functions computed on MD trajectory.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00129j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-State NMR has established itself as a cutting-egde spectroscopy for elucidating the structure of oxide glasses thanks to several decades of methodological and instrumental progresses. First-principles calculations of NMR properties combined with molecular dynamics (MD) simulations provides a powerful complementing approach for the interpretation of the NMR data although they still suffer from limitations in terms of size, time and high consumption of computational resources. We address this challenge by developing a machine-learning framework to boost predictive modelling of NMR spectra. We use kernel ridge regression techniques (least-square support vector regression and linear ridge regression) combined with the smooth overlap of atomic position (SOAP) atom-centered descriptors to efficiently predict NMR interactions: isotropic magnetic shielding and the electric field gradient (EFG) tensor. As illustrated in this work, this approach enables the simulation of MAS and MQMAS NMR spectra of very large models (more than 10000 atoms) and an efficient averaging of NMR properties over MD trajectories of nanoseconds for incorporating finite temperature effects, at computational cost of classical MD simulation. We illustrate these advances on sodium silicate glasses (SiO2-Na2O). NMR parameters (isotropic chemical shift and electric field gradient) could be predicted with an accuracy of 1 to 2% in terms of the total span of the NMR parameter values. To include vibrational effects, an approach is proposed by scaling the EFG tensor in NMR simulations with a factor obtained from the time auto-correlation functions computed on MD trajectory.
机器学习促进氧化物玻璃的第一原理 NMR
得益于数十年来方法学和仪器方面的进步,固态核磁共振已成为阐明氧化物玻璃结构的尖端光谱学。核磁共振特性的第一性原理计算与分子动力学(MD)模拟相结合,为核磁共振数据的解释提供了一种强有力的补充方法,尽管它们在规模、时间和计算资源的高消耗方面仍然受到限制。为了应对这一挑战,我们开发了一个机器学习框架,以提高核磁共振波谱的预测建模能力。我们使用核脊回归技术(最小平方支持向量回归和线性脊回归),结合原子位置平滑重叠(SOAP)原子中心描述符,有效预测 NMR 相互作用:各向同性磁屏蔽和电场梯度(EFG)张量。正如本研究中所展示的,这种方法能够模拟超大模型(超过 10000 个原子)的 MAS 和 MQMAS NMR 光谱,并在纳秒级 MD 轨迹上高效平均 NMR 特性,以纳入有限温度效应,而计算成本仅相当于经典 MD 模拟。我们以硅酸钠玻璃(SiO2-Na2O)为例说明了这些进展。核磁共振参数(各向同性化学位移和电场梯度)的预测精度为核磁共振参数值总跨度的 1% 到 2%。为了将振动效应包括在内,我们提出了一种方法,即在 NMR 模拟中将 EFG 张量与从 MD 轨迹上计算的时间自相关函数中获得的因子进行缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信