{"title":"Eventually fixed points of endomorphisms of virtually free groups","authors":"André Carvalho","doi":"10.1093/qmath/haae032","DOIUrl":null,"url":null,"abstract":"We consider the subgroup of points of finite orbit through the action of an endomorphism of a finitely generated virtually free group, with particular emphasis on the subgroup of eventually fixed points, $\\text{EvFix}(\\varphi)$: points whose orbit contains a fixed point. We provide an algorithm to compute the subgroup of fixed points of an endomorphism of a finitely generated virtually free group and prove that finite orbits have cardinality bounded by a computable constant, which allows us to solve several algorithmic problems: deciding if φ is a finite order element of $\\text{End}(G)$, if φ is aperiodic, if $\\text{EvFix}(\\varphi)$ is finitely generated and if $\\text{EvFix}(\\varphi)$ is a normal subgroup. In the cases where $\\text{EvFix}(\\varphi)$ is finitely generated, we also present a bound for its rank and an algorithm to compute a generating set.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"79 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the subgroup of points of finite orbit through the action of an endomorphism of a finitely generated virtually free group, with particular emphasis on the subgroup of eventually fixed points, $\text{EvFix}(\varphi)$: points whose orbit contains a fixed point. We provide an algorithm to compute the subgroup of fixed points of an endomorphism of a finitely generated virtually free group and prove that finite orbits have cardinality bounded by a computable constant, which allows us to solve several algorithmic problems: deciding if φ is a finite order element of $\text{End}(G)$, if φ is aperiodic, if $\text{EvFix}(\varphi)$ is finitely generated and if $\text{EvFix}(\varphi)$ is a normal subgroup. In the cases where $\text{EvFix}(\varphi)$ is finitely generated, we also present a bound for its rank and an algorithm to compute a generating set.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.