Generic Diagonal Conic Bundles Revisited

IF 0.6 4区 数学 Q3 MATHEMATICS
Alexei N Skorobogatov, Efthymios Sofos
{"title":"Generic Diagonal Conic Bundles Revisited","authors":"Alexei N Skorobogatov, Efthymios Sofos","doi":"10.1093/qmath/haae022","DOIUrl":null,"url":null,"abstract":"We prove a stronger form of our previous result that Schinzel’s Hypothesis holds for 100% of n-tuples of integer polynomials satisfying the usual necessary conditions, where the primes represented by the polynomials are subject to additional constraints in terms of Legendre symbols, as well as upper and lower bounds. We establish the triviality of the Brauer group of generic diagonal conic bundles over the projective line. Finally, we give an explicit lower bound for the probability that diagonal conic bundles in certain natural families have rational points.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"52 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a stronger form of our previous result that Schinzel’s Hypothesis holds for 100% of n-tuples of integer polynomials satisfying the usual necessary conditions, where the primes represented by the polynomials are subject to additional constraints in terms of Legendre symbols, as well as upper and lower bounds. We establish the triviality of the Brauer group of generic diagonal conic bundles over the projective line. Finally, we give an explicit lower bound for the probability that diagonal conic bundles in certain natural families have rational points.
通用对角线圆锥束再探讨
我们证明了先前结果的更强形式,即对于满足通常必要条件的 n 组整数多项式,辛泽尔假说 100%成立,其中多项式所代表的素数受到 Legendre 符号以及上下限的额外约束。我们建立了投影线上一般对角圆锥束的布劳尔群的三性。最后,我们给出了某些自然系中对角圆锥束具有有理点的概率的明确下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信