Einasto Gravitational Potentials have Difficulty to Hold Spherically Symmetric Stellar Systems with Cores

Jorge Sánchez Almeida
{"title":"Einasto Gravitational Potentials have Difficulty to Hold Spherically Symmetric Stellar Systems with Cores","authors":"Jorge Sánchez Almeida","doi":"10.3847/2515-5172/ad5a0f","DOIUrl":null,"url":null,"abstract":"It was known that an ideal spherically symmetric stellar system with isotropic velocities and an inner core cannot reside in a Navarro, Frenk, and White (NFW) gravitational potential. The incompatibility can be pinned down to the radial gradient of the NFW potential in the very center of the system, which differs from zero. The gradient is identically zero in an Einasto potential, also an alternative representation of the dark matter (DM) halos created by the kind of cold DM defining the current cosmological model. Here we show that, despite the inner gradient being zero, stellar cores are also inconsistent with Einasto potentials. This result may have implications to constrain the nature of DM through interpreting the stellar cores often observed in dwarf galaxies.","PeriodicalId":74684,"journal":{"name":"Research notes of the AAS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research notes of the AAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2515-5172/ad5a0f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It was known that an ideal spherically symmetric stellar system with isotropic velocities and an inner core cannot reside in a Navarro, Frenk, and White (NFW) gravitational potential. The incompatibility can be pinned down to the radial gradient of the NFW potential in the very center of the system, which differs from zero. The gradient is identically zero in an Einasto potential, also an alternative representation of the dark matter (DM) halos created by the kind of cold DM defining the current cosmological model. Here we show that, despite the inner gradient being zero, stellar cores are also inconsistent with Einasto potentials. This result may have implications to constrain the nature of DM through interpreting the stellar cores often observed in dwarf galaxies.
艾纳斯托引力势难以保持球心对称恒星系统
众所周知,具有各向同性速度和内核的理想球面对称恒星系统无法驻留在纳瓦罗、弗伦克和怀特(NFW)引力势中。这种不相容性可以归结为系统最中心的 NFW 势的径向梯度与零不同。在艾纳斯托(Einasto)引力势中,梯度同样为零,这也是当前宇宙学模型中冷DM所产生的暗物质(DM)光环的另一种表现形式。我们在这里证明,尽管内部梯度为零,恒星核心也与艾纳斯托势不一致。这一结果可能对通过解释矮星系中经常观测到的恒星核心来约束DM的性质有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信