Invariants of vanishing Brauer classes

IF 1.2 3区 数学 Q1 MATHEMATICS
Federica Galluzzi, Bert van Geemen
{"title":"Invariants of vanishing Brauer classes","authors":"Federica Galluzzi, Bert van Geemen","doi":"10.1007/s40687-024-00459-6","DOIUrl":null,"url":null,"abstract":"<p>A specialization of a <i>K</i>3 surface with Picard rank one to a <i>K</i>3 with rank two defines a vanishing class of order two in the Brauer group of the general <i>K</i>3 surface. We give the <i>B</i>-field invariants of this class. We apply this to the <i>K</i>3 double plane defined by a cubic fourfold with a plane. The specialization of such a cubic fourfold whose group of codimension two cycles has rank two to one which has rank three induces such a specialization of the double planes. We determine the Picard lattice of the specialized double plane as well as the vanishing Brauer class and its relation to the natural ‘Clifford’ Brauer class. This provides more insight in the specializations. It allows us to explicitly determine the <i>K</i>3 surfaces associated with infinitely many of the conjecturally rational cubic fourfolds obtained as such specializations.</p>","PeriodicalId":48561,"journal":{"name":"Research in the Mathematical Sciences","volume":"45 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in the Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00459-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A specialization of a K3 surface with Picard rank one to a K3 with rank two defines a vanishing class of order two in the Brauer group of the general K3 surface. We give the B-field invariants of this class. We apply this to the K3 double plane defined by a cubic fourfold with a plane. The specialization of such a cubic fourfold whose group of codimension two cycles has rank two to one which has rank three induces such a specialization of the double planes. We determine the Picard lattice of the specialized double plane as well as the vanishing Brauer class and its relation to the natural ‘Clifford’ Brauer class. This provides more insight in the specializations. It allows us to explicitly determine the K3 surfaces associated with infinitely many of the conjecturally rational cubic fourfolds obtained as such specializations.

布劳尔消失类的不变式
将皮卡尔秩为一的 K3 曲面特殊化为秩为二的 K3 曲面,定义了一般 K3 曲面布劳尔群中一个阶为二的消失类。我们给出了该类的 B 场不变式。我们将其应用于由带有平面的三次方四面体定义的 K3 双平面。这种立方四重的特殊化(其二维循环群的秩为 2)诱导了双平面的特殊化(其秩为 3)。我们确定了特化双平面的皮卡尔晶格、消失的布劳尔类及其与自然 "克利福德 "布劳尔类的关系。这为特殊化提供了更多洞察力。它使我们能够明确地确定与无限多猜想合理的立方四面体相关的 K3 曲面,这些曲面是通过这种特殊化获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in the Mathematical Sciences
Research in the Mathematical Sciences Mathematics-Computational Mathematics
CiteScore
2.00
自引率
8.30%
发文量
58
期刊介绍: Research in the Mathematical Sciences is an international, peer-reviewed hybrid journal covering the full scope of Theoretical Mathematics, Applied Mathematics, and Theoretical Computer Science. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to the research areas of both theoretical and applied mathematics and theoretical computer science. This journal is an efficient enterprise where the editors play a central role in soliciting the best research papers, and where editorial decisions are reached in a timely fashion. Research in the Mathematical Sciences does not have a length restriction and encourages the submission of longer articles in which more complex and detailed analysis and proofing of theorems is required. It also publishes shorter research communications (Letters) covering nascent research in some of the hottest areas of mathematical research. This journal will publish the highest quality papers in all of the traditional areas of applied and theoretical areas of mathematics and computer science, and it will actively seek to publish seminal papers in the most emerging and interdisciplinary areas in all of the mathematical sciences. Research in the Mathematical Sciences wishes to lead the way by promoting the highest quality research of this type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信